login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX6 binary arrays without the pattern 1 1 0 diagonally or antidiagonally
1

%I #5 Mar 31 2012 12:36:14

%S 64,4096,103684,2515396,49561600,953574400,17821182016,332070977536,

%T 6138818896896,113361334648384,2090692589224464,38552909380706704,

%U 710693511096960000,13100455249871650816,241471801824194480400

%N Number of nX6 binary arrays without the pattern 1 1 0 diagonally or antidiagonally

%C Column 6 of A189111

%H R. H. Hardin, <a href="/A189108/b189108.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 19*a(n-1) +38*a(n-2) -840*a(n-3) +2469*a(n-4) -64989*a(n-5) -160802*a(n-6) +2908798*a(n-7) +12912486*a(n-8) -55150046*a(n-9) -211462940*a(n-10) +441820472*a(n-11) -4366801066*a(n-12) +14780399918*a(n-13) +99880178148*a(n-14) -363416438284*a(n-15) +237861645155*a(n-16) +924183211627*a(n-17) -11352889252898*a(n-18) +28641804739480*a(n-19) +31167464051169*a(n-20) -241175685110629*a(n-21) +8889439317582*a(n-22) +1647701546368518*a(n-23) -1639852023292064*a(n-24) -6955912413885280*a(n-25) +37037535512507392*a(n-26) -58467724390706216*a(n-27) -39141596878507140*a(n-28) +268410773107976724*a(n-29) -287512536176168760*a(n-30) -857419640781811000*a(n-31) +1350873237269021808*a(n-32) +3523842992368799696*a(n-33) -22243961745614607968*a(n-34) +42450949173851776896*a(n-35) +2767319825058192304*a(n-36) -125176914231928296560*a(n-37) +377666384500748072352*a(n-38) -375251256711467371232*a(n-39) -321456961505761412480*a(n-40) +544132542952936149376*a(n-41) -810461054628234509568*a(n-42) -401193273831888932480*a(n-43) +3025299093755536489024*a(n-44) +3348516166496523379904*a(n-45) -11427745661352681967744*a(n-46) +10552131404883070133120*a(n-47) -4741375680337702573056*a(n-48) -11167814021981070198272*a(n-49) +19477108875028433304576*a(n-50) +20792598195674895393792*a(n-51) -52295516939922751003648*a(n-52) -23864374538183678673920*a(n-53) +80982209546264868558848*a(n-54) -18027700209680676972544*a(n-55) -32864758209346935234560*a(n-56) +19602574814250067263488*a(n-57) +15236680237137672306688*a(n-58) +3163671735777662107648*a(n-59) -43458546728763940798464*a(n-60) -9462184266220767543296*a(n-61) +53954257347168926433280*a(n-62) -15809789557609214771200*a(n-63) -17669011500698423001088*a(n-64) +24478618784945397563392*a(n-65) -10878420761994116202496*a(n-66) -4529381466974831247360*a(n-67) +2416313115735402479616*a(n-68) -536909763439459565568*a(n-69) -182074749890510979072*a(n-70) +748451443445141078016*a(n-71) -117265899438861189120*a(n-72) +361111842842266828800*a(n-73) -67992038631882620928*a(n-74) +45767603743094734848*a(n-75) +1093581514890805248*a(n-76) +170428288034930688*a(n-77) -876488338465357824*a(n-78)

%e Some solutions for 3X6

%e ..1..0..0..1..0..1....0..1..0..1..1..0....0..0..0..0..1..1....0..0..0..0..1..1

%e ..0..1..0..1..1..0....1..0..1..1..0..1....0..0..0..0..0..1....1..0..1..0..1..1

%e ..1..0..1..1..0..1....0..1..1..1..0..0....0..0..1..0..1..1....1..1..0..1..0..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 16 2011