%I #5 Mar 31 2012 12:36:14
%S 16,256,2500,23716,207936,1806336,15523600,133079296,1138927504,
%T 9743269264,83333832976,712693900944,6094953689616,52123490515600,
%U 445753532991376,3812020725166096,32599837915279504,278788946325939856
%N Number of nX4 binary arrays without the pattern 1 1 0 diagonally or antidiagonally
%C Column 4 of A189111
%H R. H. Hardin, <a href="/A189106/b189106.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 9*a(n-1) -18*a(n-3) +12*a(n-4) -1350*a(n-5) +300*a(n-6) +10000*a(n-7) -2448*a(n-8) -4968*a(n-9) +576*a(n-10) -71424*a(n-11) +30816*a(n-12) +71136*a(n-13) -56832*a(n-14) +206208*a(n-15) -93312*a(n-16) -201600*a(n-17) +182016*a(n-18) -281088*a(n-19) +64512*a(n-20) +348160*a(n-21) -221184*a(n-22) +110592*a(n-23) -270336*a(n-25) +147456*a(n-26) +98304*a(n-27) -65536*a(n-28)
%e Some solutions for 3X4
%e ..1..1..0..0....0..1..1..1....0..1..1..0....0..1..0..1....0..1..1..1
%e ..0..0..0..1....1..1..0..0....1..1..0..0....0..1..0..0....0..0..0..1
%e ..1..0..0..1....1..1..0..0....1..0..0..1....1..0..0..1....1..1..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 16 2011