%I #8 May 13 2013 01:54:19
%S 6,8,2,1,6,1,1,1,1,1,1,1,1,2,6,1,14,2,1,6,3,1,1,2,3,7,1,1,3,2,2,1,3,
%T 10,1,1,4,3,3,10,1,2,2,18,3,77,1,1,18,1,2,2,4,1,2,8,1,4,1,44,1,28,1,4,
%U 1,1,2,116,1,1,2,2,1,5,4,5,27,4,1,3,1,3,5,1,2,2,1,16,1,3,1,5,2,1,1,25,3,1,1,17,1,5,3,1,2,1,4,12,4,7,42,19,1,2,23,1,3,2,1,4
%N Continued fraction of Pi + sqrt(Pi^2 - 1).
%H Charles R Greathouse IV, <a href="/A189090/b189090.txt">Table of n, a(n) for n = 0..10000</a>
%t r = 2*Pi; t = (r + (-4 + r^2)^(1/2))/2; FullSimplify[t]
%t N[t, 130]
%t RealDigits[N[t, 130]][[1]] (*A189089*)
%t ContinuedFraction[t, 120] (*A189090*)
%o (PARI) contfrac(Pi+sqrt(Pi^2-1)) \\ _Charles R Greathouse IV_, Jul 29 2011
%Y Cf. A189089, A189088.
%K nonn,cofr
%O 0,1
%A _Clark Kimberling_, Apr 16 2011