login
Number of nX7 binary arrays without the pattern 0 1 0 antidiagonally or horizontally
1

%I #5 Mar 31 2012 12:36:14

%S 65,4225,167473,6254245,247434731,9879008482,394122762759,

%T 15741481568133,628654322665216,25107774055994272,1002781006865748277,

%U 40050163212918655689,1599569923398798013092,63885462706897834709856

%N Number of nX7 binary arrays without the pattern 0 1 0 antidiagonally or horizontally

%C Column 7 of A189064

%H R. H. Hardin, <a href="/A189062/b189062.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 65*a(n-1) -1004*a(n-2) -3611*a(n-3) +157300*a(n-4) +81045*a(n-5) -19668650*a(n-6) +142840703*a(n-7) -196623499*a(n-8) -1353631846*a(n-9) +1905222430*a(n-10) +25967816452*a(n-11) -88632433680*a(n-12) -24497919256*a(n-13) +492429488000*a(n-14) -328468670848*a(n-15) -1667442971072*a(n-16) +2551164281280*a(n-17) +2174730364192*a(n-18) -7089478236160*a(n-19) +1860469086784*a(n-20) +7515148920704*a(n-21) -5623168470272*a(n-22) -3836199865856*a(n-23) +5112996680192*a(n-24) +908667454720*a(n-25) -2703111798016*a(n-26) +26999938048*a(n-27) +940783903232*a(n-28) -80967908352*a(n-29) -216781387776*a(n-30) +23102492672*a(n-31) +31327645696*a(n-32) -3490095104*a(n-33) -2390302720*a(n-34) +290996224*a(n-35) +69599232*a(n-36) -9437184*a(n-37) for n>38

%e Some solutions for 3X7

%e ..0..0..1..1..1..0..1....1..0..0..0..1..1..1....0..1..1..1..1..0..0

%e ..0..1..1..0..1..1..1....1..1..0..0..1..1..1....0..0..0..1..1..1..0

%e ..0..0..1..1..1..1..0....1..1..1..1..0..0..0....0..1..1..1..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 16 2011