login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.
2

%I #21 Jul 14 2020 15:26:35

%S 1,1,2,4,36,192,6728,100352,12988816,557568000,258584046368,

%T 32565539635200,53060477521960000,19872369301840986112,

%U 112202208776036178000000,126231322912498539682594816,2444888770250892795802079170816,8326627661691818545121844900397056

%N Number of domino tilings of the n X n grid with upper left corner removed iff n is odd.

%H Alois P. Heinz, <a href="/A189002/b189002.txt">Table of n, a(n) for n = 0..50</a>

%H <a href="/index/Do#domino">Index entries for sequences related to dominoes</a>

%F a(n) = A189006(n,n).

%e a(3) = 4 because there are 4 domino tilings of the 3 X 3 grid with upper left corner removed:

%e . .___. . .___. . .___. . .___.

%e ._|___| ._|___| ._| | | ._|___|

%e | |___| | | | | | |_|_| |___| |

%e |_|___| |_|_|_| |_|___| |___|_|

%t A[1, 1] = 1;

%t A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[_, _] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];

%t a[n_] := A[n, n];

%t a /@ Range[0, 17] (* _Jean-François Alcover_, Feb 27 2020, after _Alois P. Heinz_ in A189006 *)

%Y Main diagonal of A189006.

%Y Bisection gives: A004003 (even part), A007341 (odd part).

%K nonn

%O 0,3

%A _Alois P. Heinz_, Apr 15 2011