login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A189000
Bi-unitary multiperfect numbers.
5
1, 6, 60, 90, 120, 672, 2160, 10080, 22848, 30240, 342720, 523776, 1028160, 1528800, 6168960, 7856640, 7983360, 14443520, 22932000, 23569920, 43330560, 44553600, 51979200, 57657600, 68796000, 133660800, 172972800, 779688000, 1476304896, 2339064000, 6840038400
OFFSET
1,2
COMMENTS
All entries greater than 1 are even [Hagis].
14443520 is the first (only?) composite term not divisible by 3. Excluding the factor p=3, all composite terms <= 172972800 have nonincreasing exponents in the factorization (sorted by primes). - D. S. McNeil, Apr 15 2011
Wall shows that 6, 60, and 90 are the only bi-unitary perfect numbers. - Tomohiro Yamada, Apr 15 2017
McNeil's observation about exponents does not hold in general. Indeed, a(41) = 2^8 * 3^5 * 5^2 * 7 * 11 * 13^2 * 17. - Giovanni Resta, Apr 15 2017
a(43) > 4.66*10^12. - Giovanni Resta, Sep 07 2018
We include 1 here, although this is not "multi"-perfect. - R. J. Mathar, Sep 08 2018
LINKS
Peter Hagis, Bi-Unitary amicable and multiperfect numbers, Fib. Quart. 25 (2) (1987) 144-151
Pentti Haukkanen and V. Sitaramaiah, Bi-unitary multiperfect numbers, I, Notes Number Theory Discrete Math. 26 (1) (2020) 93-171.
C. R. Wall, Bi-unitary perfect numbers, Proc. Amer. Math. Soc. 33 (1) (1972) 39-42.
Tomohiro Yamada, Determining all biunitary triperfect numbers of a certain form, arXiv:2406.19331 [math.NT], 2024.
FORMULA
{n | A188999(n)}.
EXAMPLE
n=120 divides A188999(120)=360.
n=90 divides A188999(90)=180.
n=672 divides A188999(672)=2016.
MATHEMATICA
bsig[n_] := If[n == 1, 1, Block[{p, e}, Product[{p, e} = pe; (p^(e + 1) - 1)/(p - 1) - If[EvenQ[e], p^(e/2), 0], {pe, FactorInteger[n]}]]]; Select[Range[10^5], Mod[bsig[#], #] == 0 &] (* Giovanni Resta, Apr 15 2017 *)
PROG
(PARI) a188999(n) = {my(f = factor(n)); for (i=1, #f~, p = f[i, 1]; e = f[i, 2]; f[i, 1] = if (e % 2, (p^(e+1)-1)/(p-1), (p^(e+1)-1)/(p-1) -p^(e/2)); f[i, 2] = 1; ); factorback(f); }
isok(n) = ! frac(a188999(n)/n); \\ Michel Marcus, Sep 03 2018
CROSSREFS
Cf. A007691 (analog for sigma).
Cf. A188999 (bi-unitary sigma), A318175, A318781 (the k coefficients).
Sequence in context: A074452 A168618 A185288 * A007358 A334406 A322486
KEYWORD
nonn
AUTHOR
R. J. Mathar, Apr 15 2011
EXTENSIONS
a(18)-a(27) by D. S. McNeil, Apr 15 2011
a(28)-a(31) from Giovanni Resta, Apr 15 2017
a(1)=1 inserted by Giovanni Resta, Sep 07 2018
STATUS
approved