%I #5 Mar 31 2012 12:36:14
%S 33,1089,21952,423606,7844188,144733702,2668260348,49183191266,
%T 906546313088,16709359181770,307984617365928,5676728147678902,
%U 104632630902956668,1928573464163110638,35547186061830482980
%N Number of nX6 binary arrays without the pattern 0 0 1 antidiagonally or horizontally
%C Column 6 of A188992
%H R. H. Hardin, <a href="/A188989/b188989.txt">Table of n, a(n) for n = 1..200</a>
%F Empirical: a(n) = 22*a(n-1) -47*a(n-2) -420*a(n-3) +1353*a(n-4) +490*a(n-5) -5593*a(n-6) +15840*a(n-7) -27360*a(n-8) +19496*a(n-9) -1828*a(n-10) -1376*a(n-11) -576*a(n-12) for n>14
%e Some solutions for 3X6
%e ..0..1..1..0..1..1....1..1..0..1..0..1....1..1..1..1..0..1....1..0..1..1..0..0
%e ..1..1..1..1..1..0....0..1..0..1..0..0....1..1..1..0..1..0....1..0..1..1..1..1
%e ..0..1..0..1..1..1....0..1..0..1..1..1....1..1..0..1..0..1....1..0..1..0..0..0
%K nonn
%O 1,1
%A _R. H. Hardin_ Apr 15 2011