login
Number of n X 3 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.
1

%I #8 May 01 2018 09:37:47

%S 7,49,295,1793,10871,65937,399911,2425505,14710935,89223345,541148807,

%T 3282123457,19906418039,120734483153,732267120743,4441275782369,

%U 26936796718423,163374456576241,990882967287879,6009807624994561

%N Number of n X 3 binary arrays without the pattern 0 0 1 antidiagonally or horizontally.

%C Column 3 of A188992.

%H R. H. Hardin, <a href="/A188986/b188986.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n) = 6*a(n-1) +a(n-2) -4*a(n-3) +2*a(n-4).

%F Empirical g.f.: x*(7 + 7*x - 6*x^2 + 2*x^3) / ((1 + x)*(1 - 7*x + 6*x^2 - 2*x^3)). - _Colin Barker_, May 01 2018

%e Some solutions for 4 X 3:

%e ..1..0..0....0..1..0....0..0..0....1..1..0....0..0..0....1..0..0....1..0..0

%e ..1..1..1....0..1..0....0..1..0....1..0..0....0..1..1....1..0..1....1..0..0

%e ..0..0..0....1..1..0....1..1..1....0..1..1....1..0..0....0..1..1....0..0..0

%e ..0..1..1....1..1..0....0..0..0....0..1..1....1..0..0....1..0..0....0..1..1

%Y Cf. A188992.

%K nonn

%O 1,1

%A _R. H. Hardin_, Apr 15 2011