OFFSET
1,1
COMMENTS
Decimal expansion of the length/width ratio of a sqrt(20)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(20)-extension rectangle matches the continued fraction [4,1,2,5,1,1,4,1,2,24,1,2,...] for the shape L/W=sqrt(5)+sqrt(6). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(20)-extension rectangle, 4 squares are removed first, then 1 square, then 2 squares, then 5 squares,..., so that the original rectangle of shape sqrt(5)+sqrt(6) is partitioned into an infinite collection of squares.
EXAMPLE
4.6855577202829677946064577434371676274...
MATHEMATICA
r = 48^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]]
ContinuedFraction[t, 120]
RealDigits[Sqrt[5]+Sqrt[6], 10, 150][[1]] (* Harvey P. Dale, Nov 06 2014 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 13 2011
STATUS
approved