OFFSET
1,1
COMMENTS
Decimal expansion of the length/width ratio of a sqrt(3)-extension rectangle. See A188640 for definitions of shape and r-extension rectangle.
A sqrt(3)-extension rectangle matches the continued fraction [2,5,3,2,2,9,1,2,1,2,1,9,...] for the shape L/W=(sqrt(3)+sqrt(7))/2. This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,1,...]. Specifically, for the sqrt(3)-extension rectangle, 2 squares are removed first, then 5 squares, then 3 squares, then 2 squares, ..., so that the original rectangle of shape (sqrt(3)+sqrt(7))/2 is partitioned into an infinite collection of squares.
FORMULA
(sqrt(3)+sqrt(7))/2 = exp(asinh(cos(Pi/6))). - Geoffrey Caveney, Apr 23 2014
cos(Pi/6) + sqrt(1+cos(Pi/6)^2). - Geoffrey Caveney, Apr 23 2014
EXAMPLE
2.1889010593167339420145310475725663963265322184...
MATHEMATICA
r = 3^(1/2); t = (r + (4 + r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]]
ContinuedFraction[t, 120]
RealDigits[(Sqrt[3]+Sqrt[7])/2, 10, 140][[1]] (* Harvey P. Dale, Feb 27 2023 *)
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 13 2011
STATUS
approved