login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Continued fraction for (Pi - sqrt(-4 + Pi^2))/2.
2

%I #34 Aug 09 2024 01:51:14

%S 0,2,1,3,1,1,2,3,1,4,1,1,34,4,1,3,2,1,2,2,14,1,9,5,1,1,1,1,1,9,2,1,3,

%T 2,2,2,3,26,1,8,10,2,1,23,1,67,1,2,5,1,2,3,1,1,2,1,1,17,1,2,1,9,3,8,3,

%U 3,1,2,1,21,4,1,3,1,74,1,3,1,26,1,19,1,1,2,3,1,5,1,4,2,1,2,1,2,1,1,1,1,3,4,1,1,2,1,1,1,7,1,2,38,1,9,5,6,1,1,2,1,1,4

%N Continued fraction for (Pi - sqrt(-4 + Pi^2))/2.

%H G. C. Greubel, <a href="/A188804/b188804.txt">Table of n, a(n) for n = 0..999</a>

%e (Pi - sqrt(-4 + Pi^2))/2 = [0,2,1,3,1,1,2,3,1,5,1,1,34,...].

%p numtheory:-cfrac((Pi-sqrt(Pi^2-4))/2,40,'quotients'); # _Robert Israel_, Jun 15 2015

%t r = Pi; t = (r - (-4 + r^2)^(1/2))/2; FullSimplify[t]

%t N[t, 130]

%t RealDigits[N[t, 130]][[1]]

%t ContinuedFraction[t, 120]

%o (PARI) contfrac((Pi-sqrt(-4+Pi^2))/2) \\ _Michel Marcus_, Jun 14 2015

%Y Cf. A189044 (decimal expansion).

%K nonn,cofr

%O 0,2

%A _Clark Kimberling_, Apr 15 2011

%E Definition corrected by _Robert Israel_, Jun 15 2015

%E Offset changed by _Andrew Howroyd_, Aug 08 2024