login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188802
Expansion of (x^2+1)/(x^4+2*x^3-2*x+1).
1
1, 2, 5, 8, 11, 10, -1, -32, -95, -198, -331, -440, -389, 82, 1375, 3968, 8161, 13490, 17669, 15048, -5045, -58918, -165601, -336160, -549439, -708758, -579595, 275848, 2518651, 6905250, 13838399, 22363648, 28398145, 22214242, -14137211, -107434360, -287695349
OFFSET
0,2
FORMULA
G.f.: d/dx arctan(A000045(x)) = d/dx arctan(x/(1-x-x^2)).
a(n) = (n+1) * sum(k=1..n+1, sum(i=ceiling((n-k+1)/2)..n-k+1, binomial(i,n-k-i+1) * binomial(k+i-1, k-1)) * (1-(-1)^k) / (2*k)*(-1)^((k-1)/2)).
a(n) = (tau^(n+1) - (-tau)^(-n-1))*sin(theta*(n+1)), where phi=(1+sqrt(5))/2, tau=sqrt(phi+sqrt(phi)), theta=arctan(phi^(-3/2)). - Vladimir Reshetnikov, Oct 04 2016
MATHEMATICA
Im[LucasL[Range[20], 1 + I]] (* Vladimir Reshetnikov, Oct 04 2016 *)
LinearRecurrence[{2, 0, -2, -1}, {1, 2, 5, 8}, 40] (* Harvey P. Dale, Mar 31 2019 *)
PROG
(Maxima)
a(n):= (n+1)*sum(sum(binomial(i, n-k-i+1)*binomial(k+i-1, k-1), i, ceiling((n-k+1)/2), n-k+1)*(1-(-1)^k)/(2*k)*(-1)^((k-1)/2), k, 1, n+1);
(PARI) Vec((x^2+1)/(x^4+2*x^3-2*x+1) + O(x^50)) \\ Michel Marcus, Oct 05 2016
CROSSREFS
Sequence in context: A100809 A056734 A019995 * A031141 A143263 A327138
KEYWORD
sign
AUTHOR
Vladimir Kruchinin, Apr 10 2011
STATUS
approved