login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188720
Decimal expansion of (e+sqrt(4+e^2))/2.
4
3, 0, 4, 6, 5, 2, 4, 6, 9, 5, 3, 3, 3, 4, 7, 2, 4, 7, 1, 8, 1, 1, 4, 0, 1, 7, 6, 6, 5, 8, 7, 1, 5, 5, 2, 4, 3, 2, 7, 4, 6, 0, 7, 0, 5, 8, 8, 7, 9, 7, 9, 4, 7, 7, 4, 5, 7, 7, 4, 2, 2, 4, 9, 6, 3, 1, 2, 0, 4, 6, 2, 8, 7, 4, 0, 0, 0, 6, 5, 6, 0, 6, 0, 1, 8, 9, 8, 5, 5, 3, 5, 0, 7, 3, 6, 5, 9, 4, 2, 6, 8, 0, 6, 1, 2, 7, 1, 1, 0, 2, 5, 2, 3, 4, 2, 9, 9, 9, 8, 0, 8, 1, 3, 2, 0, 9, 6, 8, 1, 5
OFFSET
1,1
COMMENTS
Decimal expansion of shape of an e-extension rectangle; see A188640 for definitions of shape and r-extension rectangle. Briefly, an r-extension rectangle is composed of two rectangles having shape r.
An e-extension rectangle matches the continued fraction A188721 of the shape L/W = (1/2) *(e+sqrt(4+e^2)). This is analogous to the matching of a golden rectangle to the continued fraction [1,1,1,1,1,1,1,...]. Specifically, for an e-extension rectangle, 3 squares are removed first, then 21 squares, then 2 squares, then 40 squares, then 1 square,..., so that the original rectangle is partitioned into an infinite collection of squares.
(e+sqrt(4+e^2))/2 = [e,e,e,... ] (continued fraction). - Clark Kimberling, Sep 23 2013
EXAMPLE
3.046524695333472471811401766587155243274607058879794774577422496312...
MAPLE
evalf((exp(1)+sqrt(4+exp(2)))/2, 140); # Muniru A Asiru, Nov 01 2018
MATHEMATICA
r=E; t = (r + (4+r^2)^(1/2))/2; FullSimplify[t]
N[t, 130]
RealDigits[N[t, 130]][[1]]
RealDigits[(E+Sqrt[4+E^2])/2, 10, 150][[1]] (* Harvey P. Dale, Jan 07 2015 *)
PROG
(PARI) default(realprecision, 100); (exp(1) + sqrt(4 + exp(2)))/2 \\ G. C. Greubel, Oct 31 2018
(Magma) SetDefaultRealField(RealField(100)); (Exp(1) +Sqrt(4+Exp(2)))/2; // G. C. Greubel, Oct 31 2018
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Apr 09 2011
STATUS
approved