login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = ceiling(binomial(2*n-1,n-1)/n).
1

%I #19 Sep 08 2022 08:45:56

%S 1,2,4,9,26,77,246,805,2702,9238,32066,112674,400024,1432736,5170584,

%T 18783763,68635478,252087092,930138522,3446163221,12815663678,

%U 47820430994,178987624514,671825076732,2528212128756,9536894864387,36054433808299,136583760727865,518401146543812,1971076359414358,7506908923471954,28634752202227978

%N a(n) = ceiling(binomial(2*n-1,n-1)/n).

%C A useful lower bound when studying certain problems involving compositions.

%H Vincenzo Librandi, <a href="/A188669/b188669.txt">Table of n, a(n) for n = 1..1000</a>

%t Table[Ceiling[Binomial[2 n - 1, n - 1]/n], {n, 35}] (* _Harvey P. Dale_, Apr. 09 2011 *)

%o (Magma) [Ceiling(Binomial(2*n-1,n-1)/n): n in [1..60]]; // _Vincenzo Librandi_, Sep 07 2016

%Y See A201058, A201059 for numerators and denominators without ceiling. - _F. Chapoton_, Aug 15 2021

%K nonn

%O 1,2

%A Robert Gerbicz and _N. J. A. Sloane_, Apr 07 2011