login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188626
a(n) = n + (n-1)*2^(n-2).
3
1, 3, 7, 16, 37, 86, 199, 456, 1033, 2314, 5131, 11276, 24589, 53262, 114703, 245776, 524305, 1114130, 2359315, 4980756, 10485781, 22020118, 46137367, 96469016, 201326617, 419430426, 872415259, 1811939356, 3758096413
OFFSET
1,2
COMMENTS
Number of idempotent elements in IDT_n (Identity Difference Full Transformation Semigroup), denoted by E(IDT_n).
FORMULA
a(n) = n + (n-1)*2^(n-2).
G.f. x*(1-3*x+2*x^2+x^3) / ( (2*x-1)^2*(x-1)^2 ). - R. J. Mathar, Apr 14 2011
E.g.f.: (2*exp(2*x)*x + 4*exp(x)*x - exp(2*x) + 1)/4. - Stefano Spezia, Dec 23 2021
EXAMPLE
For n = 4, #E(IDT_n)= 16.
MATHEMATICA
Table[n + (n-1)*2^(n-2), {n, 1, 50}] (* G. C. Greubel, Nov 01 2018 *)
LinearRecurrence[{6, -13, 12, -4}, {1, 3, 7, 16}, 40] (* Harvey P. Dale, Dec 31 2018 *)
PROG
(PARI) a(n) = n+(n-1)*2^(n-2) \\ Michel Marcus, Jun 29 2013
(Magma) [n + (n-1)*2^(n-2): n in [1..50]]; // G. C. Greubel, Nov 01 2018
CROSSREFS
Sequence in context: A173761 A361507 A124671 * A123392 A095263 A010912
KEYWORD
nonn,easy
AUTHOR
Adeniji, Adenike & Makanjuola, Samuel, Apr 14 2011
STATUS
approved