Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Jul 03 2021 19:25:14
%S 0,1,6,11,-84,-779,-2574,4031,88536,430441,369246,-8545549,-60504444,
%T -149387939,616283466,7432399271,29187308976,-10686127919,
%U -793799491914,-4495643753509,-7128875223204,69617842498501,595928935571106,1835127550964111,-3887458083492984
%N Expansion of x/(1-6*x+25*x^2).
%C Original name: G.f.: 1/(1-6*x+25*x^2).
%C Suggested by _Philippe Flajolet_ as an example of a simple formula for which the general term is hard to guess because 1-6*x+25*x^2 has 2 complex roots of equal size and modulus 1.
%C The Lucas sequence U_n(6,25). - _Peter Bala_, Feb 02 2017
%D Discussion in 1993 at the FPSAC 1993 in Florence.
%H Alois P. Heinz, <a href="/A188599/b188599.txt">Table of n, a(n) for n = 0..1000</a> (first 110 terms from Vincenzo Librandi)
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Lucas_sequence">Lucas sequence</a>
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-25).
%F a(n) = ((3+4*i)^n-(3-4*i)^n)/8/i, where i=sqrt(-1). - Denis Excoffier, Jan 19 2013
%F From _Peter Bala_, Feb 02 2017: (Start)
%F a(n) = (1/4)*( Re((2 - i)^n)*Im((2 + i)^n) - Re((2 + i)^n)*Im((2 - i)^n) ).
%F a(n) = (1/2) * the directed or signed area of the triangle in the complex plane with vertices at the points 0, (2 - i)^n and (2 + i)^n. (End)
%F a(n) = 5^n*sin(n*arctan(1/2))*cos(n*arctan(1/2))/2. - _Peter Luschny_, Feb 02 2017
%F E.g.f.: (1/4)*exp(3*x)*sin(4*x). - _Stefano Spezia_, Feb 01 2020
%p x/(1-6*x+25*x^2):series(%,x,44):seriestolist(%);
%t Table[Im[(3 + 4*I)^n]/4, {n, 0, 22}] (* _Jean-François Alcover_, Jun 14 2011 *)
%t CoefficientList[Series[x/(1-6*x+25*x^2),{x,0,30}],x] (* _Harvey P. Dale_, Dec 01 2018 *)
%t LinearRecurrence[{6,-25},{0,1},30] (* _Harvey P. Dale_, Jul 03 2021 *)
%o (PARI) Vec(x/(1-6*x+25*x^2)+O(x^99)) \\ _Charles R Greathouse IV_, Jun 14 2011
%K sign,easy
%O 0,3
%A _Simon Plouffe_, Apr 06 2011
%E Minor edits by _N. J. A. Sloane_, Apr 06 2011
%E Minor modification to Name by _Peter Bala_, Feb 02 2017