login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188580
Number of words of length n over an alphabet of size 5 which do not contain a run of 5 identical letters.
1
1, 5, 25, 125, 625, 3120, 15580, 77800, 388500, 1940000, 9687520, 48375280, 241565200, 1206272000, 6023600000, 30079249920, 150202748480, 750047481600, 3745412320000, 18702967200000, 93394519000320, 466371784007680, 2328858730112000, 11629312001280000, 58071748137600000, 289985162611998720, 1448060325923962880, 7230986194699366400
OFFSET
0,2
COMMENTS
This is the case M=5 of the general problem mentioned in A188714.
LINKS
FORMULA
G.f.: (1+x+x^2+x^3+x^4)/(1-4*x-4*x^2-4*x^3-4*x^4).
MAPLE
See A188714.
MATHEMATICA
CoefficientList[Series[(1 + x + x^2 + x^3 + x^4)/(1 - 4*x - 4*x^2 - 4*x^3 - 4*x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 09 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Apr 09 2011
STATUS
approved