login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188541
a(n) = 2 * A079500(n) - A079500(n+1).
3
1, 0, 1, 1, 2, 2, 4, 5, 9, 14, 24, 40, 70, 120, 211, 371, 658, 1172, 2102, 3786, 6856, 12470, 22782, 41789, 76947, 142180, 263578, 490104, 913858, 1708386, 3201290, 6011962, 11313274, 21329276, 40282947, 76202831, 144370582, 273906268, 520359324, 989804122, 1884992934, 3593832942, 6859139352, 13104584156, 25061042050, 47971076906, 91906883496
OFFSET
0,5
COMMENTS
Arises in studying a conjecture related to lunar divisors in base 2.
a(n) is the number of compositions of n where the first part is even, say, 2*f and the other parts are <= f. - Joerg Arndt, Jan 04 2024
LINKS
D. Applegate, M. LeBrun and N. J. A. Sloane, Dismal Arithmetic, arXiv:1107.1130 [math.NT], 2011. [Note: we have now changed the name from "dismal arithmetic" to "lunar arithmetic" - the old name was too depressing]
FORMULA
G.f.: Sum_{n>=0} x^(2*n)/(1 - Sum_{k=1..n} x^k). - Joerg Arndt, Jan 04 2024
EXAMPLE
From Joerg Arndt, Jan 04 2024: (Start)
There are a(10) = 24 compositions of 10 of the specified type:
1: [ 2 1 1 1 1 1 1 1 1 ]
2: [ 4 1 1 1 1 1 1 ]
3: [ 4 1 1 1 1 2 ]
4: [ 4 1 1 1 2 1 ]
5: [ 4 1 1 2 1 1 ]
6: [ 4 1 1 2 2 ]
7: [ 4 1 2 1 1 1 ]
8: [ 4 1 2 1 2 ]
9: [ 4 1 2 2 1 ]
10: [ 4 2 1 1 1 1 ]
11: [ 4 2 1 1 2 ]
12: [ 4 2 1 2 1 ]
13: [ 4 2 2 1 1 ]
14: [ 4 2 2 2 ]
15: [ 6 1 1 1 1 ]
16: [ 6 1 1 2 ]
17: [ 6 1 2 1 ]
18: [ 6 1 3 ]
19: [ 6 2 1 1 ]
20: [ 6 2 2 ]
21: [ 6 3 1 ]
22: [ 8 1 1 ]
23: [ 8 2 ]
24: [ 10 ]
(End)
MAPLE
b:= proc(n, m) option remember; `if`(n=0, 1,
`if`(m=0, add(b(n-j, j), j=1..n),
add(b(n-j, min(n-j, m)), j=1..min(n, m))))
end:
a:= n-> 2*b(n, 0)-b(n+1, 0):
seq(a(n), n=0..46); # Alois P. Heinz, Jan 04 2024
MATHEMATICA
b[n_, m_] := b[n, m] = If[n == 0, 1, If[m == 0, Sum[b[n-j, j], {j, 1, n}], Sum[b[n-j, Min[n-j, m]], {j, 1, Min[n, m]}]]];
a79500[n_] := b[n, 0];
a[n_] := -a79500[n+1] + 2 a79500[n];
Table[a[n], {n, 0, 48}] (* Jean-François Alcover, Sep 15 2018, after Alois P. Heinz in A079500 *)
PROG
(SageMath)
def C(n): return sum(Compositions(n, max_part=k, inner=[k]).cardinality()
for k in (0..n))
def a(n): return 2*C(n) - C(n+1) if n > 0 else 1
print([a(n) for n in (0..18)]) # Peter Luschny, Jan 04 2024
CROSSREFS
Cf. A079500.
Sequence in context: A230380 A127968 A330627 * A037026 A116651 A135586
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 03 2011
EXTENSIONS
Offset changed to 0 by N. J. A. Sloane, Jan 04 2024 at the suggestion of Joerg Arndt.
STATUS
approved