login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A188530
2^(2n+1)-5*2^(n-1)-1.
2
2, 21, 107, 471, 1967, 8031, 32447, 130431, 523007, 2094591, 8383487, 33544191, 134197247, 536829951, 2147401727, 8589770751, 34359410687, 137438298111, 549754503167, 2199020634111
OFFSET
1,1
COMMENTS
Starting with n=2, binary palindromic numbers of the form (n-1)010(n-1) where n is the index and the number of 1's
FORMULA
a(n) = 2^(2n+1)-2^(n+1)-2^(n-1)-1.
A052539(n) = a(n)-2*a(n-1) for n>1.
a(n)= +7*a(n-1) -14*a(n-2) +8*a(n-3). G.f. ( x*(-2-7*x+12*x^2) ) / ( (x-1)*(2*x-1)*(4*x-1) ). - R. J. Mathar, Apr 04 2011
a(n) = 2*4^n - 5*2^(n-1) - 1. - Karl V. Keller, Jr., Jun 09 2022
EXAMPLE
first 6 term in binary starting with n=2 are 10101,1101011,111010111,11110101111,1111101011111,111111010111111
MATHEMATICA
Table[2^(2n+1)-5 2^(n-1)-1, {n, 20}] (* or *) Rest[CoefficientList[ Series[(x(-2-7x+12x^2))/((x-1)(2x-1)(4x-1)), {x, 0, 20}], x]] (* Harvey P. Dale, Apr 19 2011 *)
PROG
(Python) print([2*4**n - 5*2**(n-1) - 1 for n in range(1, 50)]) # Karl V. Keller, Jr., Jun 09 2022
CROSSREFS
Cf. A267705.
Sequence in context: A077209 A369754 A068045 * A178328 A091789 A109789
KEYWORD
nonn,easy
AUTHOR
Brad Clardy, Apr 03 2011
STATUS
approved