login
Number of nX4 binary arrays without the pattern 0 1 0 diagonally, vertically or horizontally
1

%I #5 Mar 31 2012 12:36:12

%S 12,144,971,5626,35079,230877,1512392,9787958,63259244,409715970,

%T 2655276933,17202889943,111435906926,721881185963,4676493715792,

%U 30295147280715,196256042632128,1271373728805624,8236145058768675

%N Number of nX4 binary arrays without the pattern 0 1 0 diagonally, vertically or horizontally

%C Column 4 of A188508

%H R. H. Hardin, <a href="/A188503/b188503.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=12*a(n-1)-66*a(n-2)+288*a(n-3)-815*a(n-4)+1743*a(n-5)-2170*a(n-6)-708*a(n-7)+8571*a(n-8)-24260*a(n-9)+29061*a(n-10)+8757*a(n-11)-82862*a(n-12)+174658*a(n-13)+5251*a(n-14)-402534*a(n-15)-22429*a(n-16)+556322*a(n-17)+375232*a(n-18)-748378*a(n-19)-418312*a(n-20)+424506*a(n-21)+47333*a(n-22)+402792*a(n-23)-186063*a(n-24)-330688*a(n-25)+259289*a(n-26)-135270*a(n-27)+300693*a(n-28)+100812*a(n-29)+43040*a(n-30)-78752*a(n-31)-308217*a(n-32)+52646*a(n-33)-163853*a(n-34)+477*a(n-35)-19108*a(n-36)-71235*a(n-37)+9813*a(n-38)+1325*a(n-39)-4720*a(n-40)+32306*a(n-41)+5043*a(n-42)+6561*a(n-43)+1460*a(n-44)-658*a(n-45)-831*a(n-46)-617*a(n-47)-163*a(n-48)-40*a(n-49)-2*a(n-50)+8*a(n-51)+a(n-53)

%e Some solutions for 3X4

%e ..1..1..1..0....1..0..0..0....1..1..1..1....1..1..0..1....1..1..1..1

%e ..1..1..1..0....0..0..0..1....1..1..0..0....0..0..0..0....0..0..0..1

%e ..1..1..1..0....1..0..0..1....0..0..0..1....0..1..1..0....0..1..1..0

%K nonn

%O 1,1

%A _R. H. Hardin_ Apr 02 2011