login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = (n^4 + 16*n^3 + 65*n^2 + 26*n + 12)/12.
2

%I #28 Sep 06 2023 16:14:39

%S 1,10,39,99,203,366,605,939,1389,1978,2731,3675,4839,6254,7953,9971,

%T 12345,15114,18319,22003,26211,30990,36389,42459,49253,56826,65235,

%U 74539,84799,96078,108441,121955,136689,152714,170103,188931

%N a(n) = (n^4 + 16*n^3 + 65*n^2 + 26*n + 12)/12.

%C Third column of number triangle A188461.

%H Vincenzo Librandi, <a href="/A188480/b188480.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (5,-10,10,-5,1).

%F G.f.: (1 + 5*x - x^2 - 6*x^3 + 3*x^4)/(1-x)^5.

%F E.g.f.: exp(x)*(12 + 108*x + 120*x^2 + 22*x^3 + x^4)/12. - _Stefano Spezia_, Sep 06 2023

%t Table[(n^4+16n^3+65n^2+26n+12)/12,{n,0,40}] (* or *) LinearRecurrence[ {5,-10,10,-5,1},{1,10,39,99,203},40] (* _Harvey P. Dale_, Jan 23 2016 *)

%o (Magma) [(n^4+16*n^3+65*n^2+26*n+12)/12: n in [0..90]]; // _Vincenzo Librandi_, Apr 05 2011

%o (PARI) a(n)=1+(n^4+16*n^3+65*n^2+26*n)/12 \\ _Charles R Greathouse IV_, May 04 2011

%Y Cf. A188461.

%K nonn,easy

%O 0,2

%A _Paul Barry_, Apr 01 2011