login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = [5r]-[nr]-[5r-nr], where r=(1+sqrt(5))/2 and []=floor.
2

%I #25 Aug 11 2022 03:19:37

%S 1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,

%T 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,

%U 1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1,1,1,1,0

%N a(n) = [5r]-[nr]-[5r-nr], where r=(1+sqrt(5))/2 and []=floor.

%C See A188294.

%C Essentially the same as 1 - A187946, see formulas. - _Michel Dekking_, Oct 15 2016, edited by _M. F. Hasler_, Oct 12 2017

%C Sequence A188471 lists the position of 0's, all other terms equal 1. - _M. F. Hasler_, Oct 12 2017

%H Antti Karttunen, <a href="/A188470/b188470.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = [5r] - [nr] - [5r-nr], where r=(1+sqrt(5))/2 is the golden ratio.

%F a(n) = 1 - A187946(n) for n not equal to 5 (from [-x]=-[x]-1 for non-integer x). - _Michel Dekking_, Oct 15 2016

%F For n>5, a(n) = 9 - A000201(n) + A000201(n-5). - _Max Alekseyev_, Oct 14 2017

%p A188470 := proc(n)

%p 8-A000201(n)-A000201(5-n);

%p end proc:

%p seq(A188470(n),n=1..50) ; # _R. J. Mathar_, Oct 13 2017

%t r = (1 + 5^(1/2))/2 + .0000000000001;

%t f[n_] := Floor[5r] - Floor[n*r] - Floor[5r - n*r]

%t t = Flatten[Table[f[n], {n, 1, 200}]] (* A188470 *)

%t Flatten[Position[t, 0] ] (* A188471 *)

%t Flatten[Position[t, 1] ] (* complement of A188471 *)

%o (PARI)

%o \\ For z = a + b*phi with phi = quadgen(5), exact representation of (sqrt(5)+1)/2:

%o FLOOR(z,F=1,f(w)=floor(real(z)+imag(z)*w),L=f(F))=while(L!=L=f(F=1+1/F),);LA188470(n,r=quadgen(5)) = FLOOR(5*r)-FLOOR(n*r)-FLOOR(5*r-n*r) \\ _M. F. Hasler_, Oct 12 2017

%o (PARI)

%o A000201(m) = (sqrtint((m^2)*5)+m)\2;

%o A188470(n) = if(n<=5,n%5!=0,9+A000201(n-5)-A000201(n)); \\ _Max Alekseyev_, Oct 13 2017

%o (Python)

%o from math import isqrt

%o def A188470(n): return 7-(n+isqrt(5*n**2)>>1)+(n-1+isqrt(5*(n-5)**2)>>1) if n>5 else int(n<5) # _Chai Wah Wu_, Aug 10 2022

%Y Cf. A188294, A188471, A187946.

%K nonn

%O 1

%A _Clark Kimberling_, Apr 01 2011