Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #35 Oct 19 2024 21:41:22
%S 1,3,8,22,62,178,519,1533,4578,13800,41937,128345,395232,1223792,
%T 3807903,11900549,37339043,117574429,371429284,1176876762,3739129185,
%U 11909686261,38022182028,121648373964,389979453010,1252517211660,4029754366713,12986073134365
%N Diagonal sums of triangle A188463.
%C Apparently, number of Dyck (n+3)-paths with no descent having the same length as the preceding ascent. - _David Scambler_, Apr 28 2012 (Proved by S. Elizalde, Disc. Math., 2021)
%D S. Elizalde, Symmetric peaks and symmetric valleys in Dyck paths, Discrete Math., 344 (2021), no. 6, 112364.
%H G. C. Greubel, <a href="/A188464/b188464.txt">Table of n, a(n) for n = 0..1000</a>
%H S. Elizalde, <a href="https://arxiv.org/abs/2008.05669">Symmetric peaks and symmetric valleys in Dyck paths</a>, arXiv:2008.05669 [math.CO], 2020, see Theorem 2.1 for t=0 and r=1.
%F G.f.: (1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/(2*x^4).
%F Conjecture: (n+4)*a(n)-(4*n+9)*a(n-1) +(2*n-1)*a(n-2) -a(n-3) +(n-3)*a(n-4)=0. - _R. J. Mathar_, Nov 17 2011
%F a(n) = Sum_{m=1..floor((n+2)/2)} C(2*m,m)/(m+1)*C(n+m+1,3*m-1). - _Vladimir Kruchinin_, Jan 24 2022
%e For n=1, Dyck 4-paths are (2,-1,2,-3), (3,-1,1,-3) and (3,-2,1,-2), a(1) = 3.
%t CoefficientList[Series[(1-3*x+x^2-x^3-(1-x)*Sqrt[1-4*x+2*x^2+x^4])/( 2*x^4), {x,0,30}], x] (* _G. C. Greubel_, Nov 16 2018 *)
%o (PARI) x='x+O('x^30); Vec((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4)) \\ _G. C. Greubel_, Nov 16 2018
%o (Magma) m:=30; R<x>:=PowerSeriesRing(Rationals(), m); Coefficients(R!( (1-3*x+x^2-x^3-(1-x)*Sqrt(1-4*x+2*x^2 +x^4))/( 2*x^4) ));
%o (Sage) s=((1-3*x+x^2-x^3-(1-x)*sqrt(1-4*x+2*x^2+x^4))/( 2*x^4)).series(x, 30); s.coefficients(x, sparse=False) # _G. C. Greubel_, Nov 16 2018
%o (Maxima)
%o a(n):=sum((binomial(2*m,m)*binomial(n+m+1,3*m-1))/(m+1),m,1,(n+2)/2); /* _Vladimir Kruchinin_, Jan 24 2022 */
%Y Cf. A000108, A188463.
%K nonn,easy
%O 0,2
%A _Paul Barry_, Apr 01 2011