Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #62 Sep 27 2022 09:00:44
%S 11,13,47,37,107,73,191,121,299,181,431,253,587,337,767,433,971,541,
%T 1199,661,1451,793,1727,937,2027,1093,2351,1261,2699,1441,3071,1633,
%U 3467,1837,3887,2053,4331,2281,4799,2521,5291,2773,5807,3037,6347,3313,6911,3601
%N a(n) = numerator(H(n+2)-H(n-1)), where H(n) = Sum_{k=1..n} 1/k is the n-th harmonic number.
%C Denominators are listed in A033931.
%C A027446 appears to be divisible by a(n).
%C The sequence lists also the largest odd divisors of 3*m^2-1 (A080663) for m>1. In fact, for m even, the largest odd divisor is 3*m^2-1 itself; for m odd, the largest odd divisor is (3*m^2-1)/2. From this follows the second formula given in Formula field. - _Bruno Berselli_, Aug 27 2013
%H Reinhard Zumkeller, <a href="/A188386/b188386.txt">Table of n, a(n) for n = 1..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,3,0,-3,0,1).
%F a(n) = numerator((3*n^2+6*n+2)/(n*(n+1)*(n+2))).
%F a(n) = (3-(-1)^n)*(3*n^2+6*n+2)/4.
%F a(2n+1) = A158463(n+1), a(2n) = A003154(n+1).
%F G.f.: -x*(11+13*x+14*x^2-2*x^3-x^4+x^5) / ( (x-1)^3*(1+x)^3 ). - _R. J. Mathar_, Apr 09 2011
%F a(n) = numerator of coefficient of x^3 in the Maclaurin expansion of sin(x)*exp((n+1)*x). - _Francesco Daddi_, Aug 04 2011
%F H(n+3) = 3/2 + 2*f(n)/((n+2)*(n+3)), where f(n) = Sum_{k=0..n}((-1)^k*binomial(-3,k)/(n+1-k)). - _Gary Detlefs_, Jul 17 2011
%F a(n) = A213998(n+2,2). - _Reinhard Zumkeller_, Jul 03 2012
%F Sum_{n>=1} 1/a(n) = c*(tan(c) - cot(c)/2) - 1/2, where c = Pi/(2*sqrt(3)). - _Amiram Eldar_, Sep 27 2022
%p seq((3-(-1)^n)*(3*n^2+6*n+2)/4, n=1..100);
%t Table[(3 - (-1)^n)*(3*n^2 + 6*n + 2)/4, {n, 40}] (* _Wesley Ivan Hurt_, Jan 29 2017 *)
%t Numerator[#[[4]]-#[[1]]]&/@Partition[HarmonicNumber[Range[0,50]],4,1] (* or *) LinearRecurrence[{0,3,0,-3,0,1},{11,13,47,37,107,73},50] (* _Harvey P. Dale_, Dec 31 2017 *)
%o (Magma) [Numerator((3*n^2+6*n+2)/((n*(n+1)*(n+2)))): n in [1..50]]; // _Vincenzo Librandi_, Mar 30 2011
%o (Haskell)
%o import Data.Ratio ((%), numerator)
%o a188386 n = a188386_list !! (n-1)
%o a188386_list = map numerator $ zipWith (-) (drop 3 hs) hs
%o where hs = 0 : scanl1 (+) (map (1 %) [1..])
%o -- _Reinhard Zumkeller_, Jul 03 2012
%Y Cf. A033931 (denominators), A001008, A001711, A027446, A002805, A003154, A080663, A158463, A213998.
%K nonn,easy,look
%O 1,1
%A _Gary Detlefs_, Mar 29 2011