login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Partial sums of A005248.
4

%I #59 Sep 08 2022 08:45:56

%S 2,5,12,30,77,200,522,1365,3572,9350,24477,64080,167762,439205,

%T 1149852,3010350,7881197,20633240,54018522,141422325,370248452,

%U 969323030,2537720637,6643838880,17393796002,45537549125,119218851372,312119004990,817138163597,2139295485800

%N Partial sums of A005248.

%C Different from A024851.

%C Luo proves that these integers cannot be uniquely decomposed as the sum of distinct and nonconsecutive terms of the Lucas number sequence. - _Michel Marcus_, Apr 20 2020

%H Robert Israel, <a href="/A188378/b188378.txt">Table of n, a(n) for n = 0..1000</a>

%H Clark Kimberling, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL23/Kimberling/kimber12.html">Lucas Representations of Positive Integers</a>, J. Int. Seq., Vol. 23 (2020), Article 20.9.5.

%H David C. Luo, <a href="https://arxiv.org/abs/2004.08316">Nonuniqueness Properties of Zeckendorf Related Decompositions</a>, arXiv:2004.08316 [math.NT], 2020.

%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (4,-4,1).

%F a(n) = A000032(2n+1)+1 = A002878(n)+1 = 2*A027941(n+1)-3*A027941(n).

%F G.f.: ( -2+3*x ) / ( (x-1)*(x^2-3*x+1) ). - _R. J. Mathar_, Mar 30 2011

%F a(n) = 5*A001654(n) + 1 + (-1)^n, n>=0. [_Wolfdieter Lang_, Jul 23 2012]

%F (a(n)^3 + (a(n)-2)^3) / 2 = A000032(A016945(n)) = Lucas(6*n+3) = A267797(n), for n>0. - _Altug Alkan_, Jan 31 2016

%F a(n) = 2^(-1-n)*(2^(1+n)-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n). - _Colin Barker_, Nov 02 2016

%p f:= gfun:-rectoproc({a(n+3)-4*a(n+2)+4*a(n+1)-a(n), a(0) = 2, a(1) = 5, a(2) = 12}, a(n), remember):

%p map(f, [$0..60]); # _Robert Israel_, Feb 02 2016

%t LinearRecurrence[{4,-4,1},{2,5,12},30] (* _Harvey P. Dale_, Oct 05 2015 *)

%t Accumulate@ LucasL@ Range[0, 58, 2] (* _Michael De Vlieger_, Jan 24 2016 *)

%o (PARI) a(n) = 5*fibonacci(n)*fibonacci(n+1) + 1 + (-1)^n; \\ _Michel Marcus_, Aug 26 2013

%o (PARI) Vec((-2+3*x)/((x-1)*(x^2-3*x+1)) + O(x^100)) \\ _Altug Alkan_, Jan 24 2016

%o (Magma) [5*Fibonacci(n)*Fibonacci(n+1)+1+(-1)^n: n in [0..40]]; // _Vincenzo Librandi_, Jan 24 2016

%Y Cf. A000032, A002878, A027941, A001654.

%Y Cf. A016945, A267797.

%K nonn,easy

%O 0,1

%A _Gabriele Fici_, Mar 29 2011