%I #9 Sep 08 2022 08:45:56
%S 1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,
%T 1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,
%U 1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0,1,1,1,1,1,1,0,1,1,0,1,1,1,1,1,1,0
%N a(n) = [n*r] - [k*r] - [n*r-k*r], where r=1/sqrt(2), k=4, [ ]=floor.
%C See A188014.
%H G. C. Greubel, <a href="/A188318/b188318.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = [n*r] - [4*r] - [n*r-4*r], where r=1/sqrt(2).
%t r=2^(-1/2); k=4;
%t t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r],{n,1,220}] (*A188318*)
%t Flatten[Position[t,0]] (*A188319*)
%t Flatten[Position[t,1]] (*A188320*)
%o (PARI) for(n=1,100, print1(floor(n/sqrt(2)) - floor((n-4)/sqrt(2)) - floor(4/sqrt(2)), ", ")) \\ _G. C. Greubel_, Apr 13 2018
%o (Magma) [Floor(n/Sqrt(2)) - Floor((n-4)/Sqrt(2)) - Floor(4/Sqrt(2)): n in [1..100]]; // _G. C. Greubel_, Apr 13 2018
%Y Cf. A188014, A188319, A188320.
%K nonn
%O 1
%A _Clark Kimberling_, Mar 28 2011