%I #9 Jun 15 2021 16:51:25
%S 0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,
%T 0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,
%U 0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,1,0,1,1,0,1,1,0
%N [nr]-[nr-r], where r=1/sqrt(2), [ ]=floor.
%C See A188014.
%C These are the first differences of A049472, so a(n) = A080764(n-2). - R. J. Mathar, Apr 19 2011
%F a(n)=[nr]-[r(n-1)], where r=1/sqrt(2), [nr] = A049472(n).
%t r=2^(-1/2)); k=1;
%t t=Table[Floor[n*r]-Floor[(n-k)*r]-Floor[k*r],{n,1,220}] (*A188295*)
%t Flatten[Position[t,0]] (*A083051*)
%t Flatten[Position[t,1]] (*A087057*)
%t With[{c=1/Sqrt[2]},Table[Floor[c n]-Floor[c n-c],{n,130}]] (* _Harvey P. Dale_, Jun 15 2021 *)
%Y Cf. A188014, A083051, A087057, A187967.
%K nonn
%O 1
%A _Clark Kimberling_, Mar 26 2011