login
A188249
T(n,k)=Number of arrangements of n+2 nonzero numbers x(i) in -k..k with the sum of x(i)*x(i+1) equal to zero
15
4, 16, 0, 36, 20, 12, 64, 52, 120, 0, 100, 144, 548, 300, 40, 144, 208, 1504, 1632, 1284, 0, 196, 436, 3292, 7092, 12692, 4132, 140, 256, 532, 6376, 16484, 58824, 51196, 16272, 0, 324, 816, 10564, 43440, 193232, 368588, 355396, 57808, 504, 400, 1072, 17040, 75080
OFFSET
1,1
COMMENTS
Table starts
...4.....16.......36.........64.........100.........144..........196
...0.....20.......52........144.........208.........436..........532
..12....120......548.......1504........3292........6376........10564
...0....300.....1632.......7092.......16484.......43440........75080
..40...1284....12692......58824......193232......521124......1142180
...0...4132....51196.....368588.....1399640.....4875112.....11953848
.140..16272...355396....2880240....14715004....55994544....168083116
...0..57808..1657632...20265640...123729664...591604824...2026547348
.504.223308.10858368..156028036..1247614580..6764014136..27843005992
...0.828456.54754656.1154193268.11199296500.75116513672.355600251460
LINKS
EXAMPLE
Some solutions for n=6 k=4
.-2...-3...-3...-1...-2...-1....1....2...-3...-4....3...-4...-2...-4...-4...-2
.-2...-4...-4...-4...-4...-4...-4...-4...-2...-3...-4...-3...-3...-4...-3...-4
.-3...-2...-2....4....3....2....1....1...-4....3...-2....1....3....2....1....2
.-4...-2...-1...-1....1...-1....2...-4....2...-4....1...-3...-1....2....4....4
..3....4...-4...-4...-2...-2...-1...-2...-2...-3....1....1...-2...-1....2...-3
.-2...-4....2...-3....1...-2...-2...-3....4....3....4...-3...-3....1...-3...-4
..1...-3...-3...-3....1...-2...-1....2....3....3....1....3...-2....3....3....4
.-2....4....4....3....4....2...-4....4...-2...-1...-3....3....4...-4...-2....2
CROSSREFS
Column 1 is 4*A138364
Sequence in context: A061849 A052107 A069019 * A228559 A165410 A016486
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Mar 25 2011
STATUS
approved