login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of strictly increasing arrangements of 4 numbers in -(n+2)..(n+2) with sum zero
1

%I #7 Mar 31 2012 12:36:11

%S 5,12,24,43,69,104,150,207,277,362,462,579,715,870,1046,1245,1467,

%T 1714,1988,2289,2619,2980,3372,3797,4257,4752,5284,5855,6465,7116,

%U 7810,8547,9329,10158,11034,11959,12935,13962,15042,16177,17367,18614,19920,21285

%N Number of strictly increasing arrangements of 4 numbers in -(n+2)..(n+2) with sum zero

%C Row 4 of A188181

%H R. H. Hardin, <a href="/A188182/b188182.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=3*a(n-1)-3*a(n-2)+2*a(n-3)-3*a(n-4)+3*a(n-5)-a(n-6).

%F Empirical: a(n) = (n+1)*(4*n^2+17*n+22)/18 -2 *A049347(n)/9; g.f. -x*(-5+3*x-3*x^2+3*x^3-3*x^4+x^5) / ( (1+x+x^2)*(x-1)^4 ). - R. J. Mathar, Mar 26 2011

%e Some solutions for n=5

%e .-6...-7...-6...-5...-3...-7...-4...-5...-4...-5...-6...-2...-6...-6...-7...-4

%e .-4....0...-1...-4....0...-1...-3...-3...-2...-2...-5...-1...-3...-3....0...-3

%e ..3....1....3....4....1....2....0....1....2....2....5....0....3....2....3....1

%e ..7....6....4....5....2....6....7....7....4....5....6....3....6....7....4....6

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 23 2011