login
A187913
Generalized Riordan array based on the Fine's numbers A000957.
1
1, 0, 1, 1, 1, 1, 2, 4, 1, 1, 6, 10, 5, 2, 1, 18, 32, 13, 9, 2, 1, 57, 100, 44, 28, 10, 3, 1, 186, 329, 142, 100, 32, 15, 3, 1, 622, 1101, 480, 344, 119, 55, 16, 4, 1, 2120, 3761, 1640, 1214, 420, 216, 60, 22, 4, 1, 7338, 13035, 5698, 4300, 1517, 810, 243, 92, 23, 5, 1
OFFSET
0,7
COMMENTS
First column is the Fine's numbers A000957. Row sums are A000958. Inverse binomial transform of A187914.
FORMULA
Let g(x)=(1+2x-sqrt(1-4x))/(2x(2+x)) be the g.f. of the Fine's numbers A000957. Then column k has
g.f. x^k*g(x)^(k+1)/(1-xg(x)-x^2g(x)^2)^floor((k+1)/2).
EXAMPLE
Triangle begins
1,
0, 1,
1, 1, 1,
2, 4, 1, 1,
6, 10, 5, 2, 1,
18, 32, 13, 9, 2, 1,
57, 100, 44, 28, 10, 3, 1,
186, 329, 142, 100, 32, 15, 3, 1,
622, 1101, 480, 344, 119, 55, 16, 4, 1,
2120, 3761, 1640, 1214, 420, 216, 60, 22, 4, 1,
7338, 13035, 5698, 4300, 1517, 810, 243, 92, 23, 5, 1
Production matrix is
0, 1,
1, 1, 1,
1, 2, 0, 1,
1, 2, 1, 1, 1,
1, 2, 1, 2, 0, 1,
1, 2, 1, 2, 1, 1, 1,
1, 2, 1, 2, 1, 2, 0, 1,
1, 2, 1, 2, 1, 2, 1, 1, 1,
1, 2, 1, 2, 1, 2, 1, 2, 0, 1
Thus
57=1.0+0.18+1.32+1.13+1.9+1.2+1.1;
100=1.18+1.32+2.13+2.9+2.2+2.1;
44=1.32+0.13+1.9+1.2+1.1
CROSSREFS
Sequence in context: A201758 A096110 A207260 * A329458 A332010 A201287
KEYWORD
nonn,easy,tabl
AUTHOR
Paul Barry, Mar 15 2011
STATUS
approved