login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A187878 Numbers n such that sopfr(n + omega(n)) = sopfr(n). 1

%I

%S 5,8,10,125,231,250,470,1846,2844,2856,3570,5126,5320,7473,8687,12555,

%T 12573,16740,16764,17877,18630,20601,21620,22011,24823,27468,28861,

%U 31941,33120,37053,42315,42588,43761,49404,58078,61072,67728,68320,75042,79947,84660,86427,92432,97723,98802,99580

%N Numbers n such that sopfr(n + omega(n)) = sopfr(n).

%C Sopfr(n) = sum of the prime factors of n with multiplicity (integer logarithm)

%C omega(n) = number of prime divisors of n counted without multiplicity

%H Antonio Roldán, <a href="http://hojaynumeros.blogspot.com">hojaynumeros.blogspot.com</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Additive_function">Additive function</a>

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/SumofPrimeFactors.html"> Sum of Prime Factors</a>

%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/PrimeFactor.html">Prime Factor</a>

%e omega(5126)=3, (5126=2*11*233), 5126+3=5129, sopfr(5126)=2+11+233=246,

%e 5129=23*223, sopfr(5129)=2+223=246

%t omega[n_] := If[n < 2, 0, Length[FactorInteger[n]]]; sopfr[n_] := Module[{p, e}, If[n < 2, 1, {p, e} = Transpose[FactorInteger[n]]; Total[p*e]]]; Select[Range[2, 100000], sopfr[#] == sopfr[# + omega[#]] &] (* _T. D. Noe_, Mar 14 2011 *)

%o (PARI) sopfr(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }

%o { for (n=1, 10^6, if (sopfr(n)==sopfr(n+omega(n)), print1(n,", "))); }

%o /* _Antonio Roldán_, Oct 23 2012 */

%Y Cf. A187877.

%K nonn

%O 1,1

%A _Antonio Roldán_, Mar 14 2011

%E Extended by _T. D. Noe_, Mar 14 2011

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 18:47 EST 2016. Contains 278745 sequences.