Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #33 Jan 29 2019 09:21:08
%S 1,5,10,45,60,128,231,308,470,847,1846,3570,4284,4740,5126,5688,6171,
%T 6650,7473,7980,8687,9310,9964,10640,11172,12896,17877,19716,22011,
%U 22736,23280,23836,24823,33480,34335,36384,37260,41202,42315,43761,44480
%N Numbers k such that sopfr(k + bigomega(k)) = sopfr(k).
%H Harvey P. Dale, <a href="/A187877/b187877.txt">Table of n, a(n) for n = 1..500</a>
%H Antonio Roldán, <a href="http://hojaynumeros.blogspot.com/2011/03/parientes-de-ruth-y-aaron.html">hojaynumeros.blogspot.com</a>
%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Additive_function">Additive function</a>
%e 308 is a term because bigomega(308)=4 (308=2*2*7*11), 308 + 4 = 312, sopfr(308) = 2 + 2 + 7 + 11 = 22, 312 = 2*2*2*3*13, sopfr(312) = 2 + 2 + 2 + 3 + 13 = 22.
%p A001414 := proc(n) if n = 1 then 0; else f := ifactors(n)[2] ; add( op(1,i)*op(2,i),i=f) ; end if; end proc:
%p isA187877 := proc(n) local m; m := n+numtheory[bigomega](n) ; is(A001414(n)=A001414(m)) ; end proc:
%p for n from 1 to 50000 do if isA187877(n) then printf("%d,",n) ; end if; end do: # _R. J. Mathar_, Mar 14 2011
%t soprQ[n_]:=Total[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[n]]] == Total[Flatten[Table[#[[1]],{#[[2]]}]&/@FactorInteger[n+PrimeOmega[n]]]]; Select[Range[50000],soprQ] (* _Harvey P. Dale_, Jan 21 2013 *)
%o (PARI)
%o sopfr(n)= { local(f, s=0); f=factor(n); for(i=1, matsize(f)[1], s+=f[i, 1]*f[i, 2]); return(s) }
%o { for (n=1, 10^6, if (sopfr(n)==sopfr(n+bigomega(n)), print1(n,", "))); }
%o /* _Antonio Roldán_, Oct 23 2012 */
%Y Cf. A001222 (bigomega), A001414 (sopfr).
%Y Cf. A187878.
%K nonn
%O 1,2
%A _Antonio Roldán_, Mar 14 2011