

A187858


Number of 3step one space for components leftwards or up, two space for components rightwards or down asymmetric quasiqueen's tours (antidiagonal moves become knight moves) on an n X n board summed over all starting positions.


1



0, 2, 81, 254, 578, 1030, 1610, 2318, 3154, 4118, 5210, 6430, 7778, 9254, 10858, 12590, 14450, 16438, 18554, 20798, 23170, 25670, 28298, 31054, 33938, 36950, 40090, 43358, 46754, 50278, 53930, 57710, 61618, 65654, 69818, 74110, 78530, 83078, 87754, 92558
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Row 3 of A187857.


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..50


FORMULA

Empirical: a(n) = 64*n^2  252*n + 238 for n>3.
Conjectures from Colin Barker, Apr 26 2018: (Start)
G.f.: x^2*(2 + 75*x + 17*x^2 + 57*x^3  23*x^4) / (1  x)^3.
a(n) = 3*a(n1)  3*a(n2) + a(n3) for n>6.
(End)


EXAMPLE

Some solutions for 4 X 4:
..0..0..0..0....1..0..0..0....0..0..0..0....0..3..2..0....0..0..0..0
..2..1..0..0....0..0..0..0....0..0..0..0....0..0..1..0....0..1..0..0
..0..0..0..0....0..3..2..0....0..0..0..0....0..0..0..0....0..0..3..0
..0..0..3..0....0..0..0..0....0..3..2..1....0..0..0..0....2..0..0..0


CROSSREFS

Cf. A187857.
Sequence in context: A056972 A051391 A041799 * A072408 A318587 A302722
Adjacent sequences: A187855 A187856 A187857 * A187859 A187860 A187861


KEYWORD

nonn


AUTHOR

R. H. Hardin, Mar 14 2011


STATUS

approved



