login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of n-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on a kXk board summed over all starting positions
9

%I #6 Mar 31 2012 12:36:09

%S 1,4,0,9,5,0,16,27,2,0,25,65,81,0,0,36,119,254,216,0,0,49,189,578,968,

%T 486,0,0,64,275,1030,2754,3320,846,0,0,81,377,1610,5428,11986,9932,

%U 1206,0,0,100,495,2318,9237,26836,47962,26584,1008,0,0,121,629,3154,14040

%N T(n,k)=Number of n-step one space for components leftwards or up, two space for components rightwards or down asymmetric quasi-queen's tours (antidiagonal moves become knight moves) on a kXk board summed over all starting positions

%C Table starts

%C .1.4....9.....16......25.......36........49.......64.......81.....100.....121

%C .0.5...27.....65.....119......189.......275......377......495.....629.....779

%C .0.2...81....254.....578.....1030......1610.....2318.....3154....4118....5210

%C .0.0..216....968....2754.....5428......9237....14040....19837...26628...34413

%C .0.0..486...3320...11986....26836.....50378....81124...120051..166504..220483

%C .0.0..846...9932...47962...126397....262409...452766...707541.1017934.1387600

%C .0.0.1206..26584..180750...568870...1314428..2456614..4062007.6094090

%C .0.0.1008..61668..636102..2432312...6343874.12918800.22675997

%C .0.0..414.124880.2090520..9934272..29607932.65963326

%C .0.0....0.219008.6387404.38766870.133665550

%H R. H. Hardin, <a href="/A187857/b187857.txt">Table of n, a(n) for n = 1..130</a>

%F Empirical: T(1,k) = k^2

%F Empirical: T(2,k) = 8*k^2 - 18*k + 9 for k>1

%F Empirical: T(3,k) = 64*k^2 - 252*k + 238 for k>3

%F Empirical: T(4,k) = 497*k^2 - 2652*k + 3448 for k>5

%F Empirical: T(5,k) = 3763*k^2 - 25044*k + 40644 for k>7

%F Empirical: T(6,k) = 28294*k^2 - 224508*k + 433614 for k>9

%F Empirical: T(7,k) = 211612*k^2 - 1941340*k + 4328678 for k>11

%F Empirical: T(8,k) = 1575830*k^2 - 16367550*k + 41250447 for k>13

%F Empirical: T(9,k) = 11710007*k^2 - 135575032*k + 380311550 for k>15

%F Empirical: T(10,k) = 86897560*k^2 - 1108193530*k + 3420011978 for k>17

%e Some n=4 solutions for 4X4

%e ..0..0..1..0....4..0..0..0....0..0..0..0....0..3..0..4....0..0..0..0

%e ..0..3..0..0....0..3..0..0....0..2..1..0....0..0..2..1....3..2..0..0

%e ..0..0..2..0....0..0..2..0....0..4..0..0....0..0..0..0....0..1..0..0

%e ..0..0..0..4....0..0..0..1....0..3..0..0....0..0..0..0....0..0..4..0

%Y Row 2 is A181890(n-2)

%K nonn,tabl

%O 1,2

%A _R. H. Hardin_ Mar 14 2011