login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 6-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.
1

%I #10 Apr 26 2018 08:38:50

%S 0,0,16032,292776,1400168,3807828,7700944,13082348,19910456,28160124,

%T 37824352,48902340,61394088,75299596,90618864,107351892,125498680,

%U 145059228,166033536,188421604,212223432,237439020,264068368,292111476

%N Number of 6-step king-knight's tours (piece capable of both kinds of moves) on an n X n board summed over all starting positions.

%C Row 6 of A187850.

%H R. H. Hardin, <a href="/A187854/b187854.txt">Table of n, a(n) for n = 1..50</a>

%F Empirical: a(n) = 706880*n^2 - 5180252*n + 9274644 for n>9.

%F Conjectures from _Colin Barker_, Apr 26 2018: (Start)

%F G.f.: 4*x^3*(4008 + 61170*x + 142484*x^2 + 117405*x^3 + 46297*x^4 + 708*x^5 - 10396*x^6 - 6286*x^7 - 1750*x^8 - 200*x^9) / (1 - x)^3.

%F a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>12.

%F (End)

%e Some solutions for 4 X 4:

%e ..0..5..4..0....0..0..0..0....0..0..0..0....0..4..0..6....0..0..2..0

%e ..1..6..3..0....0..4..0..0....0..1..4..6....0..0..5..0....0..0..3..1

%e ..0..0..2..0....5..3..0..0....0..0..5..2....0..1..3..0....0..0..5..0

%e ..0..0..0..0....1..2..6..0....0..3..0..0....0..0..0..2....6..4..0..0

%Y Cf. A187850.

%K nonn

%O 1,3

%A _R. H. Hardin_, Mar 14 2011