login
Rank transform of the sequence floor(3n/2-1/2); complement of A187834.
2

%I #6 Dec 04 2016 19:46:25

%S 1,3,5,6,9,10,12,14,16,17,19,21,23,25,27,28,30,32,34,36,38,39,41,43,

%T 45,46,49,50,52,54,56,58,59,61,63,65,67,68,70,72,74,76,78,79,81,83,85,

%U 87,89,90,92,94,96,98,100,101,103,105,107,108,111,112,114,116,118,119,121,123,125,127,129,130,133,134,136,138,140,141,143,145,147,149

%N Rank transform of the sequence floor(3n/2-1/2); complement of A187834.

%C A187833 is the rank transform of the sequence A001631 of positive integers not divisible by 3. For a discussion of rank transforms, see A187224.

%t seqA = Table[Floor[3n/2-1/2], {n, 1, 220}]

%t seqB = Table[n, {n, 1, 220}];(*A000027*)

%t jointRank[{seqA_,

%t seqB_}] := {Flatten@Position[#1, {_, 1}],

%t Flatten@Position[#1, {_, 2}]} &[

%t Sort@Flatten[{{#1, 1} & /@ seqA, {#1, 2} & /@ seqB}, 1]];

%t limseqU =

%t FixedPoint[jointRank[{seqA, #1[[1]]}] &,

%t jointRank[{seqA, seqB}]][[1]] (*A187833*)

%t Complement[Range[Length[seqA]], limseqU] (*A187834*)

%t (*by _Peter J. C. Moses_, Mar 13 2011*)

%Y Cf. A187224, A187834.

%K nonn

%O 1,2

%A _Clark Kimberling_, Mar 13 2011