login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of different ways to divide an n X 5 rectangle into subsquares, considering only the list of parts.
3

%I #33 Sep 08 2022 08:45:56

%S 1,1,3,5,9,11,20,26,36,48,64,80,106,128,160,195,238,281,340,397,467,

%T 544,633,724,838,950,1083,1226,1385,1550,1745,1942,2165,2402,2663,

%U 2933,3242,3555,3902,4270,4667,5079,5539,6007,6518,7055,7631,8227,8880,9547

%N Number of different ways to divide an n X 5 rectangle into subsquares, considering only the list of parts.

%H Alois P. Heinz, <a href="/A187753/b187753.txt">Table of n, a(n) for n = 0..1000</a>

%F G.f.: (x^9 - x^8 + x^7 - 4*x^6 + x^5 - 3*x^4 - x^3 - 2*x^2 - 1) / (x^19 - x^18 - x^16 + 2*x^12 + x^10 - x^9 - 2*x^7 + x^3 + x - 1).

%e a(4) = 9 because there are 9 ways to divide a 4 X 5 rectangle into subsquares, considering only the list of parts: [20(1 X 1)], [16(1 X 1), 1(2 X 2)], [12(1 X 1), 2(2 X 2)], [11(1 X 1), 1(3 X 3)], [8(1 X 1), 3(2 X 2)], [7(1 X 1), 1(2 X 2), 1(3 X 3)], [4(1 X 1), 4(2 X 2)], [4(1 X 1), 1(4 X 4)], [3(1 X 1), 2(2 X 2), 1(3 X 3)]. There is no way to divide this rectangle into [2(1 X 1), 2(3 X 3)].

%p gf:= (x^9-x^8+x^7-4*x^6+x^5-3*x^4-x^3-2*x^2-1)/

%p (x^19-x^18-x^16+2*x^12+x^10-x^9-2*x^7+x^3+x-1):

%p a:= n-> coeff(series(gf, x, n+1), x, n):

%p seq(a(n), n=0..60);

%o (Magma) m:=50; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+2*x^2+x^3+3*x^4-x^5+4*x^6-x^7+x^8-x^9)/((1-x)^5*(1+x)^2*(1+x^2)*(1-x +x^2)*(1+x+x^2)^2*(1+x+x^2+x^3+x^4)))); // _Bruno Berselli_, Apr 17 2013

%Y Column k=5 of A224697.

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Apr 17 2013