login
Number of (n+1)X4 binary arrays with no 2X2 subblock commuting with any of its horizontal and vertical 2X2 subblock neighbors
1

%I #5 Mar 31 2012 12:36:09

%S 130,689,3698,20684,114633,641743,3588249,20085335,112408781,

%T 629194966,3521712900,19712026328,110333621076,617565943941,

%U 3456685796582,19347999859815,108295958012823,606161699592248,3392850404764771

%N Number of (n+1)X4 binary arrays with no 2X2 subblock commuting with any of its horizontal and vertical 2X2 subblock neighbors

%C Column 3 of A187729

%H R. H. Hardin, <a href="/A187723/b187723.txt">Table of n, a(n) for n = 1..200</a>

%F Empirical: a(n)=16*a(n-2)+84*a(n-3)+97*a(n-4)-244*a(n-5)-1176*a(n-6)-1628*a(n-7)+1391*a(n-8)+8986*a(n-9)+16368*a(n-10)+565*a(n-11)-62773*a(n-12)-103993*a(n-13)-95467*a(n-14)+541694*a(n-15)+871913*a(n-16)-1565229*a(n-17)-1481446*a(n-18)+1664446*a(n-19)-315800*a(n-20)+4577777*a(n-21)+104375*a(n-22)-13667920*a(n-23)+8806613*a(n-24)+1786927*a(n-25)-881059*a(n-26)+17040712*a(n-27)-27341259*a(n-28)-9096514*a(n-29)+22602052*a(n-30)+14551868*a(n-31)-7372935*a(n-32)-16214239*a(n-33)-41663404*a(n-34)+69525324*a(n-35)+13907253*a(n-36)-35769212*a(n-37)-37907774*a(n-38)+11707188*a(n-39)+71599878*a(n-40)-13490162*a(n-41)-76029280*a(n-42)+25734743*a(n-43)+36459704*a(n-44)+1074426*a(n-45)-29546717*a(n-46)-4249093*a(n-47)+18269176*a(n-48)+3418367*a(n-49)-12057132*a(n-50)+9365133*a(n-51)-11370522*a(n-52)+10443714*a(n-53)-4679606*a(n-54)+502708*a(n-55)+478699*a(n-56)-634191*a(n-57)+864897*a(n-58)-710464*a(n-59)+363720*a(n-60)-189979*a(n-61)+134714*a(n-62)-79224*a(n-63)+24456*a(n-64)-5936*a(n-65)+2432*a(n-66)-1408*a(n-67) for n>69

%e Some solutions for 3X4

%e ..0..1..0..0....0..0..1..0....0..1..1..1....0..0..1..0....0..1..0..1

%e ..1..1..1..1....1..1..1..0....1..1..1..0....0..1..1..0....0..1..0..1

%e ..0..0..1..0....1..1..0..0....1..0..1..1....0..1..0..0....1..1..1..1

%K nonn

%O 1,1

%A _R. H. Hardin_ Mar 13 2011