login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187695
G.f.: x^4*(1+x)*(1+12*x-31*x^2+12*x^2)/((1-x)^2*(1-2*x)^2*(1-3*x)*(1-4*x)).
1
0, 0, 0, 0, 1, 26, 264, 1846, 10616, 54354, 258388, 1168862, 5109696, 21805162, 91460972, 378874998, 1555269016, 6341845250, 25732834116, 104034429454, 419461348976, 1687846763418, 6781455643420, 27216164395430, 109135969307976, 437358413244466, 1751878519306484, 7014851306040126, 28081422396752416
OFFSET
0,6
LINKS
F. Bergeron, M. Bousquet-Mélou and S. Dulucq, Standard paths in the composition poset, Ann. Sci. Math. Quebec, 19 (1995), no. 2, 139-151.
FORMULA
a(n) = 27*2^(n-4)*n + 33*2^(n-4) - 2*n + 2 - 26*3^(n-2)+25*4^(n-3), n>1. - R. J. Mathar, Mar 17 2011
E.g.f.: (-901 -228*x + 1152*(1-x)*exp(x) + (1188 + 1944*x)*exp(2*x) - 1664*exp(3*x) + 225*exp(4*x))/576. - G. C. Greubel, Nov 06 2018
MATHEMATICA
Join[{0, 0}, LinearRecurrence[{13, -67, 175, -244, 172, -48}, {0, 0, 1, 26, 264, 1846}, 30]] (* Harvey P. Dale, Mar 02 2015 *)
PROG
(Maxima) makelist(coeff(taylor(x^4*(1+x)*(1+12*x-31*x^2+12*x^2)/((1-x)^2*(1-2*x)^2*(1-3*x)*(1-4*x)), x, 0, n), x, n), n, 0, 28); /* Bruno Berselli, May 30 2011 */
(Magma) [0, 0] cat [27*2^(n-4)*n +33*2^(n-4)-2*n+2-26*3^(n-2)+25*4^(n-3): n in [2..30]]; // Vincenzo Librandi, Feb 19 2012
(PARI) concat([0, 0], vector(30, n, n++; 27*2^(n-4)*n +33*2^(n-4)-2*n+2-26*3^(n-2)+25*4^(n-3))) \\ G. C. Greubel, Nov 06 2018
CROSSREFS
Cf. A187693.
Sequence in context: A016106 A200041 A092723 * A328874 A195755 A186261
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Mar 12 2011
STATUS
approved