|
|
A187638
|
|
A convolution of binomial coefficients.
|
|
1
|
|
|
1, 1, 1, 8, 77, 824, 9448, 113728, 1419349, 18215576, 239034104, 3194168768, 43331889928, 595375647424, 8270102936896, 115966112244224, 1639592525879333, 23350785267093848, 334714889445506584, 4825695011761675456, 69936530485677013528
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,4
|
|
LINKS
|
|
|
FORMULA
|
G.f.: 9/8 - (1/8)*(K(16*x)/Pi)^2, where K(x) is the elliptic integral of the first kind (as defined in Mathematica).
a(n) = (1/8)*sum(C(2k,k)^2/(2k-1)*C(2n-2k,n-k)^2/(2n-2k-1), k=0..n) for n >= 1.
Recurrence: n^3*a(n) = 8*(4*n^3 - 12*n^2 + 10*n - 3)*a(n-1) - 256*(n-3)*(n-2)*(n-1)*a(n-2). - Vaclav Kotesovec, Apr 06 2014
|
|
MAPLE
|
seq((-1/8)*add(binomial(2*k, k)^2/(2*k-1)*binomial(2*(n-k), n-k)^2/(2*(n-k)-1), k=0..n), n=1..12);
|
|
MATHEMATICA
|
Table[-1/8 Sum[Binomial[2k, k]^2/(2k-1) Binomial[2n-2k, n-k]^2/(2n-2k-1), {k, 0, n}], {n, 1, 20}]
|
|
PROG
|
(Maxima) makelist((-1/8)*sum(binomial(2*k, k)^2/(2*k-1)*binomial(2*(n-k), n-k)^2/(2*(n-k)-1), k, 0, n), n, 1, 12);
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|