login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).
0

%I #11 Jan 05 2013 08:50:11

%S 1,0,1,0,1,1,0,2,9,1,0,6,77,36,1,0,24,750,875,100,1,0,120,8494,20250,

%T 5525,225,1,0,720,111132,488824,257250,24500,441,1,0,5040,1659636,

%U 12685512,11514069,2058000,85652,784,1,0,40320,27943920,357325100,522796680,156042999,12002256,252252,1296,1,0,362880,524580336,10941291000,24681106400,11453045625,1444332771,55566000,652500,2025,1

%N Triangle read by rows of products of (signless) Stirling numbers of the first kind (A132393) and Stirling numbers of the second kind (A008277).

%F Formula: a(n,k) = s(n,k)*S(n,k), where the s(n,k) are the (signless) Stirling numbers of the first kind and the S(n,k) are the Stirling numbers of the second kind.

%e Triangle begins:

%e 1

%e 0,1

%e 0,1,1

%e 0,2,9,1

%e 0,6,77,36,1

%e 0,24,750,875,100,1

%e 0,120,8494,20250,5525,225,1

%e 0,720,111132,488824,257250,24500,441,1

%e 0,5040,1659636,12685512,11514069,2058000,85652,784,1

%p seq(seq(abs(combinat[stirling1](n,k))*combinat[stirling2](n,k),k=0..n),n=0..8);

%t Flatten[Table[Table[Abs[StirlingS1[n, k]]*StirlingS2[n, k], {k, 0, n}],{n, 0, 8}] ,1]

%o (Maxima) create_list(abs(stirling1(n,k)*stirling2(n,k)),n,0,10,k,0,n);

%Y Cf. A132393, A008277

%K nonn,easy,tabl

%O 0,8

%A _Emanuele Munarini_, Mar 11 2011