login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A trisection of A001405 (central binomial coefficients): binomial(3n+2,floor((3n+2)/2))/2, n>=0.
2

%I #8 Jun 11 2015 12:25:26

%S 1,5,35,231,1716,12155,92378,676039,5200300,38779380,300540195,

%T 2268783825,17672631900,134564468610,1052049481860,8061900920775,

%U 63205303218876,486734856412028,3824345300380220,29566145391215356,232714176627630544,1804857108504066435

%N A trisection of A001405 (central binomial coefficients): binomial(3n+2,floor((3n+2)/2))/2, n>=0.

%C For the trisection of sequences see a comment and a reference under A187357.

%F a(n) = binomial(3*n+2,floor((3*n+2)/2))/2, n>=0.

%F O.g.f.: G1(x^2) + x*G2(x^2), with G1(x) and G2(x) the o.g.f.s of A187364 and A187366, respectively.

%o (PARI) vector(30, n, n--; binomial(3*n+2,(3*n+2)\2)/2) \\ _Michel Marcus_, Jun 11 2015

%Y Cf. A187442: binomial(3*n,floor(3*n/2)), A187443: binomial(3*n+1,floor((3*n+1)/2)).

%K nonn,easy

%O 0,2

%A _Wolfdieter Lang_, Mar 10 2011