%I #14 Mar 17 2021 19:53:11
%S 1,2,3,4,5,6,8,9,10,11,12,13,15,16,17,18,19,20,22,23,24,25,26,27,29,
%T 30,31,32,33,34,36,37,38,39,40,41,43,44,45,46,47,48,49,51,52,53,54,55,
%U 56,58,59,60,61,62,63,65,66,67,68,69,70,72,73,74,75,76,77,79,80,81,82,83,84,86,87,88,89,90,91,92,94,95,96,97,98,99,101,102,103,104,105,106,108,109,110,111,112,113,115,116
%N a(n) = floor(s*n), where s =-2 + sqrt(10); complement of A187395.
%C A187395 and A187396 are the Beatty sequences based on r = 4 + sqrt(10) and s = -2 + sqrt(10); 1/r + 1/s = 1.
%F a(n) = floor(s*n), where s = -2 + sqrt(10).
%t r=4+10^(1/2); s=-2+10^(1/2);
%t Table[Floor[r*n],{n,1,80}] (* A187395 *)
%t Table[Floor[s*n],{n,1,80}] (* A187396 *)
%o (Python)
%o from sympy import integer_nthroot
%o def A187396(n): return integer_nthroot(10*n**2,2)[0]-2*n # _Chai Wah Wu_, Mar 17 2021
%Y Cf. A187395.
%K nonn
%O 1,2
%A _Clark Kimberling_, Mar 09 2011
%E Edited by _Clark Kimberling_, Mar 17 2021