%I #14 Mar 29 2021 14:48:15
%S 7,14,21,28,35,42,50,57,64,71,78,85,93,100,107,114,121,128,136,143,
%T 150,157,164,171,179,186,193,200,207,214,222,229,236,243,250,257,265,
%U 272,279,286,293,300,307,315,322,329,336,343,350,358,365,372,379,386,393,401,408,415,422,429,436,444,451,458,465,472,479,487,494,501
%N a(n) = floor(r*n), where r = 4 + sqrt(10); complement of A187396.
%C A187395 and A187396 are the Beatty sequences based on r = 4 + sqrt(10) and s = -2 + sqrt(10); 1/r + 1/s = 1.
%F a(n) = floor(r*n), where r = 4 + sqrt(10).
%t r=4+10^(1/2); s=-2+10^(1/2);
%t Table[Floor[r*n],{n,1,80}] (* A187395 *)
%t Table[Floor[s*n],{n,1,80}] (* A187396 *)
%o (Python)
%o from sympy import integer_nthroot
%o def A187395(n): return 4*n+integer_nthroot(10*n**2,2)[0] # _Chai Wah Wu_, Mar 16 2021
%Y Cf. A187396.
%K nonn
%O 1,1
%A _Clark Kimberling_, Mar 09 2011
%E Edited by _Clark Kimberling_, Mar 17 2021