Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #55 Sep 19 2023 12:21:50
%S 2,1,0,1,-1,1,-2,0,1,-1,-1,1,-3,0,1,1,-2,-1,1,2,0,-4,0,1,-1,-3,0,1,5,
%T 0,-5,0,1,-1,3,3,-4,-1,1,1,0,-4,0,1,-1,-3,6,4,-5,-1,1,-7,0,14,0,-7,0,
%U 1,1,-4,-4,1,1,2,0,-16,0,20,0,-8,0,1,1,4,-10,-10,15,6,-7,-1,1
%N Coefficient array for minimal polynomials of 2*cos(Pi/n) (rising powers of x).
%C The degree delta(n) of the monic integer row polynomial, call it C(n,x), is A055034(n).
%C This minimal polynomial of the algebraic number 2*cos(Pi/n), n>=1, is given by
%C C(n,x) = sum(a(n,m)*x^m,m=0..A055034(n)) = (2^delta(n))*Psi(2n,x/2), with Psi(n,x) the minimal polynomial of cos(2Pi/n), with rational coefficient array A181875/A181876. There also references and links are found. See especially Watkins and Zeitlin for Psi(n,x).
%C The zeros of C(n,x), n>=2, are 2*cos(Pi k/n), with k=1,...,n-1 and gcd(k,2n)=1. For n=1 the zero is -2. Alternatively, these zeros are 2*cos(Pi(2l+1)/n), with l=0,...,floor((n-2)/2) and gcd(2l+1,n)=1. For n=1 take l=0.
%C The first column looks like the differently signed A020513(n),n>=1.
%C The polynomial for row n=2^m, m>=1, coincides with the row polynomial R(2^(m-1),x) of A127672. See the factorization of these R-polynomials (also known as Chebyshev C-polynomials) given there. - _Wolfdieter Lang_, Sep 15 2011
%C From _Wolfdieter Lang_, Nov 04 2013: (Start)
%C The norm N(rho(n)) of rho(n) = 2*cos(Pi/n), n >= 1, in the algebraic number field Q(rho(n)) is given by (-1)^delta(n)* C(n, 0), with C(n, x) of degree delta(n) = A055034(n). If N(rho(n)) equals +1 or -1 then 1/rho(n), which is an element of Q(rho(n)), is in fact an integer in this number field. For the 1/rho(n) formula in terms of the C coefficients see A230079. Thus 1/rho(n) is a Q(rho(n))-integer if and only if C(n, 0) is +1 or -1 , and this happens if and only if n is from the set {A230078(k), k >= 2}.
%C The negation says that, for n a positive integer, 1/rho(n) is not a Q(rho(n))-integer if and only if n is 1 or of the form 2*p^m, m >= 0 and p a prime, which are the numbers of A138929 including 1.
%C The proof uses for case (i): n = 2*m+1, m >= 1, the fact that C(2*m+1, 0)^2 = (product( 2*cos(Pi*(2*l+1)/(2*m+1)), l=0 .. m-1 and gcd(2*l+1, 2*m+1) = 1))^2 = (product(2*cos(Pi*k/(2*m+1)), k=1..L and gcd(k, 2*m+1) = 1))^2 = cyclotomic(2*m +1, -1). See the linked Q(rho(n)) paper, eq. (31), for a product formula for cyclotomic(n, -1). With the prime factorization of 2*m+1, and the fact that only the squarefree kernel of 2*m+1 enters (see an Oct 29 2013 comment on A013595), one finds, form the formula for cyclotomic(p1*p2*...*pk, x) involving the Moebius function, cyclotomic(2*m +1, -1) = +1, m >= 1. C(1, 0) = +2. For case (ii): n even, one has C(2^m, 0) = 0, -2, +2, for m = 1 , 2, >=3, respectively (see eq. (39) of the linked Q(rho(n)) paper). For odd prime p: (-1)^((p-1)/2)*C(2*p^m, 0) = cyclotomic(2*p^m, -1) = cyclotomic(2*p, -1) = cyclotomic(p, +1) = p, for m >= 1. For more than one odd prime in the squarefree kernel of n = 2*m, m >= 1, one finds C(2*m, 0) = +1 from cyclotomic(2*p1*...*pk, -1) = +1, for k >= 2. (End)
%C For the conversion of the C-polynomials into sums of Chebyshev's S-polynomials (A049310) see A255237. - _Wolfdieter Lang_, Mar 16 2015
%H Robert Israel, <a href="/A187360/b187360.txt">Table of n, a(n) for n = 1..10064</a> (first 220 rows, flattened)
%H Wolfdieter Lang, <a href="/A187360/a187360.pdf">Minimal Polynomials of 2*cos(pi/n)</a>
%H Wolfdieter Lang, <a href="http://arxiv.org/abs/1210.1018">The field Q(2cos(pi/n)), its Galois group and length ratios in the regular n-gon</a>, arXiv:1210.1018 [math.GR], 2012-2017.
%H Wolfdieter Lang, <a href="https://arxiv.org/abs/2008.04300">On the Equivalence of Three Complete Cyclic Systems of Integers</a>, arXiv:2008.04300 [math.NT], 2020.
%F a(n,m) = [x^m] C(n,x), n>=1, m=0..A055034(n), with the minimal (monic and integer) polynomial C(n,x) of 2*cos(Pi/n). See the comment above.
%e n=1: 2, 1;
%e n=2: 0, 1;
%e n=3: -1, 1;
%e n=4: -2, 0, 1;
%e n=5: -1,-1, 1;
%e n=6: -3, 0, 1;
%e n=7: 1,-2,-1, 1;
%e n=8: 2, 0,-4, 0, 1;
%e n=9: -1,-3, 0, 1;
%e n=10: 5, 0,-5, 0, 1;
%e ...
%e C(2,x) = R(1,x), C(4,x) = R(2,x), C(8,x) = R(4,x),... with R(n,x) from A127672. - _Wolfdieter Lang_, Sep 15 2011
%p f:= proc(n) local P,z,j;
%p P:= factor(evala(Norm(z-convert(2*cos(Pi/n),RootOf))));
%p if type(P,`^`) then P:= op(1,P) fi;
%p seq(coeff(P,z,j),j=0..degree(P));
%p end proc:
%p seq(f(n),n=1..20); # _Robert Israel_, Aug 04 2015
%t Flatten[ CoefficientList[ Table[ MinimalPolynomial[2*Cos[Pi/n], x], {n, 1, 17}], x]] (* _Jean-François Alcover_, Sep 26 2011 *)
%o (PARI) halftot(n)=if(n<=2, 1, eulerphi(n)/2); \\ A023022
%o default(realprecision, 110);
%o row(n) = Vecrev(algdep(2*cos(2*Pi/n), halftot(n))); \\ _Michel Marcus_, Sep 19 2023
%Y Cf. A055034, A181875/A181876, A181877.
%Y Cf. A192003 (row sums). A192004 (alternating row sums).
%K sign,easy,tabf
%O 1,1
%A _Wolfdieter Lang_, Jul 14 2011