login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Sum{floor(kn/7), k=1,2,3,4,5,6}.
1

%I #8 Mar 20 2013 06:11:57

%S 0,0,3,6,9,12,15,21,21,24,27,30,33,36,42,42,45,48,51,54,57,63,63,66,

%T 69,72,75,78,84,84,87,90,93,96,99,105,105,108,111,114,117,120,126,126,

%U 129,132,135,138,141,147,147,150,153,156,159,162,168,168,171,174,177,180,183,189,189,192,195,198,201,204,210,210,213,216,219,222,225,231,231,234,237,240,243,246,252,252,255,258,261,264,267,273,273,276,279,282,285,288,294,294,297,300

%N Sum{floor(kn/7), k=1,2,3,4,5,6}.

%F a(n)=Sum{floor(kn/7), k=1,2,3,4,5,6}.

%F Empirical g.f.: 3*x^2*(2*x^5 +x^4 +x^3 +x^2 +x +1) / ((x-1)^2*(x^6 +x^5 +x^4 +x^3 +x^2 +x +1)). - _Colin Barker_, Mar 20 2013

%t Table[Sum[Floor[k*n/7],{k,1,6}],{n,0,120}

%K nonn

%O 0,3

%A _Clark Kimberling_, Mar 08 2011