login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187336
Sum{floor(kn/6), k=1,2,3,4,5}.
1
0, 0, 3, 6, 8, 10, 15, 15, 18, 21, 23, 25, 30, 30, 33, 36, 38, 40, 45, 45, 48, 51, 53, 55, 60, 60, 63, 66, 68, 70, 75, 75, 78, 81, 83, 85, 90, 90, 93, 96, 98, 100, 105, 105, 108, 111, 113, 115, 120, 120, 123, 126, 128, 130, 135, 135, 138, 141, 143, 145, 150, 150, 153, 156, 158, 160, 165, 165, 168, 171, 173, 175, 180, 180, 183, 186, 188, 190, 195, 195, 198, 201, 203, 205, 210, 210, 213, 216, 218, 220, 225, 225, 228, 231, 233, 235, 240, 240, 243, 246, 248, 250, 255, 255, 258, 261, 263, 265, 270, 270
OFFSET
0,3
FORMULA
a(n)=Sum{floor(kn/6), k=1,2,3,4,5}.
Empirical g.f.: x^2*(5*x^4+2*x^3+2*x^2+3*x+3) / ((x-1)^2*(x+1)*(x^2-x+1)*(x^2+x+1)). - Colin Barker, Mar 20 2013
MATHEMATICA
Table[Sum[Floor[k*n/6], {k, 1, 5}], {n, 0, 200}]
CROSSREFS
Sequence in context: A099518 A280106 A184855 * A169582 A121741 A343409
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 08 2011
STATUS
approved