login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187307
Hankel transform of an alternating sum of Motzkin numbers.
2
1, 2, 2, -1, -5, -5, 1, 8, 8, -1, -11, -11, 1, 14, 14, -1, -17, -17, 1, 20, 20, -1, -23, -23, 1, 26, 26, -1, -29, -29, 1, 32, 32, -1, -35, -35, 1, 38, 38, -1, -41, -41, 1, 44, 44, -1, -47, -47, 1, 50, 50, -1, -53, -53, 1, 56, 56, -1, -59, -59, 1
OFFSET
0,2
COMMENTS
Hankel transform of A187306.
LINKS
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
FORMULA
G.f.: (1+x^2-x^3)/(1-x+x^2)^2.
a(n) = (1/3)*(2*n+2-(n-1)*cos(2*n*Pi/3)-(n-1)*cos(4*n*Pi/3)-cos((2*n+1)*Pi/3)-sin((8*n+1)*Pi/6))*(-1)^floor(n/3). - Wesley Ivan Hurt, Sep 25 2017
MATHEMATICA
LinearRecurrence[{2, -3, 2, -1}, {1, 2, 2, -1}, 120] (* Harvey P. Dale, Jan 21 2019 *)
PROG
(PARI) Vec((1+x^2-x^3)/(1-x+x^2)^2 + O(x^80)) \\ Michel Marcus, Sep 26 2017
CROSSREFS
Cf. A187306.
Sequence in context: A158068 A210879 A176265 * A280785 A204851 A114292
KEYWORD
sign,easy
AUTHOR
Paul Barry, Mar 08 2011
STATUS
approved