OFFSET
0,7
COMMENTS
a(n)=Sum(k*A098056(n,k), k>=0).
FORMULA
G.f.=z^5*G^2*(3G-1)(G-1)/[(1-z)(1-z^2*G^2)], where G=1+zG+z^2*G(G-1).
Conjecture D-finite with recurrence -(n+1)*(42968*n-187991)*a(n) +(-33354*n^2+888062*n+187991)*a(n-1) +(587317*n^2-5596253*n+61483
17)*a(n-2) +(-549823*n^2+5720814*n-11020859)*a(n-3) +(176865*n^2-2521427*n+8169148)*a(n-4) +(-587317*n^2+6446371*n-18005842)*a(n-5)
+(592791*n^2-6850333*n+19290494)*a(n-6) -(143511*n-619655)*(n-8)*a(n-7)=0. - R. J. Mathar, Jul 22 2022
MAPLE
eq := g = 1+z*g+z^2*g*(g-1): g := RootOf(eq, g): gser := series(z^5*g^2*(3*g-1)*(g-1)/((1-z)*(1-z^2*g^2)), z = 0, 38): seq(coeff(gser, z, n), n = 0 .. 33);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 05 2011
STATUS
approved