login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A187259
Number of UH^jU's, DH^jD's, and DH^jU's for some j>0, in all peakless Motzkin paths of length n (here U=(1,1), D=(1,-1) and H=(1,0); can be easily expressed using RNA secondary structure terminology).
1
0, 0, 0, 0, 0, 0, 2, 11, 39, 122, 358, 1008, 2770, 7493, 20049, 53239, 140603, 369837, 969883, 2537685, 6628215, 17288950, 45048932, 117285552, 305159262, 793581817, 2062948149, 5361112383, 13929080271, 36183941553, 93984332531, 244094334682, 633922350198, 1646271999611
OFFSET
0,7
COMMENTS
a(n)=Sum(k*A098056(n,k), k>=0).
FORMULA
G.f.=z^5*G^2*(3G-1)(G-1)/[(1-z)(1-z^2*G^2)], where G=1+zG+z^2*G(G-1).
Conjecture D-finite with recurrence -(n+1)*(42968*n-187991)*a(n) +(-33354*n^2+888062*n+187991)*a(n-1) +(587317*n^2-5596253*n+61483
17)*a(n-2) +(-549823*n^2+5720814*n-11020859)*a(n-3) +(176865*n^2-2521427*n+8169148)*a(n-4) +(-587317*n^2+6446371*n-18005842)*a(n-5)
+(592791*n^2-6850333*n+19290494)*a(n-6) -(143511*n-619655)*(n-8)*a(n-7)=0. - R. J. Mathar, Jul 22 2022
MAPLE
eq := g = 1+z*g+z^2*g*(g-1): g := RootOf(eq, g): gser := series(z^5*g^2*(3*g-1)*(g-1)/((1-z)*(1-z^2*g^2)), z = 0, 38): seq(coeff(gser, z, n), n = 0 .. 33);
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, May 05 2011
STATUS
approved