login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of 2-step self-avoiding walks on an n X n X n cube summed over all starting positions.
2

%I #24 Mar 05 2022 22:11:27

%S 0,24,108,288,600,1080,1764,2688,3888,5400,7260,9504,12168,15288,

%T 18900,23040,27744,33048,38988,45600,52920,60984,69828,79488,90000,

%U 101400,113724,127008,141288,156600,172980,190464,209088,228888,249900,272160

%N Number of 2-step self-avoiding walks on an n X n X n cube summed over all starting positions.

%C Row 2 of A187162.

%H R. H. Hardin, <a href="/A187163/b187163.txt">Table of n, a(n) for n = 1..50</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F a(n) = 6*n^3 - 6*n^2.

%F From _Colin Barker_, Apr 20 2018: (Start)

%F G.f.: 12*x^2*(2 + x) / (1 - x)^4.

%F a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n>4.

%F (End)

%F a(n) = 12 * A006002(n-1). - _Alois P. Heinz_, Feb 28 2022

%e A solution for 2 X 2 X 2:

%e 0 0 0 0

%e 1 0 2 0

%Y Cf. A006002, A187162.

%K nonn,easy

%O 1,2

%A _R. H. Hardin_, Mar 06 2011